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ABSTRACT

Many Artificial Intelligence programs exhibit behavior that can be mean-
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1. Introduction
Many Artificial Intelligence programs exhibit behavior that can be meaningfully compared

against the performance of another system, e.g. against a human. A satisfactory understanding
of such a program must include an analysis of the behavior of the program and the reasons for
that behavior in terms of the program’s structure. The primary goal of this thesis is to analyze
carefully the performance of the Technology Chess Program [Gillogly 1972) as a paradigm for
analysis of other complex Al performance programs. The analysis will use empirical, analytical,
and statistical methods.

1.1. The Technology Chess Program

The Technology Chess Program (TECH) is intended to have the simplest possible
design consistent with reasonable performance in comparison with human play and/or
other operational chess programs. The intent is to provide a benchmark program which
can easily be coded by any programmer working on his own chess program, and which can
be used to help evaluate the performance of that programming effort. TECH's perfor-
mance will be higher on faster machines, thus providing an increasing measure of the
efficacy of a direct application of computer technology to chess programming. §2
describes TECH in detail. .

Technology programs would be useful in several areas of Al to help decouple the
increasing power of machines from the power of the underlying aigorithms. In speech
understanding, for example, a program that operates in ten times real time today could
well operate in real time severs: years from now by moving to a more powerful machine.
A technology program would give us a way to compare the performance of an algorithm
running on a machine several years ago with one running on a modern machine. All that
is required is to implement the simple technology program on both machines and deter-
mine the increment in performance.

TECH is a good candidate for performance analysis for several reasons. First, the
performance level of TECH is above that of the lowest human tournament players, so
that use can be made of performance measures designed for humans. Second, while by
no means a trivial program, TECH has relatively few important mechanisms, making a
quantitative analysis of them conceivable. Finally, the performance is above the average
chess program, suggesting that TECH's behavior is complex enough to be interesting in
itself. In the 1971 ACM-sponsored U. S. Computer Chess Championship TECH placed
second behind Chess 3.5, the Northwestern Program, and ahead of six others. In the
1972 USCCC TECH pleced third in a field of eight. In 1973 TECH finished in the middle
of the field of 12 contestants, but TECH 11, Alan Baisley's rewrite of TECH in assembly
language at MIT, placed second.

1.2. Empirical methods

Careful experimentation is often useful when it is inconvenient or impossible (o
construct and analyze mathematical models of sufficient detail.
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1.2.1. Benchmarking the Technology Chess Program

The most accurate method of ascertaining the playing ability of a chess playing
system (program, human, etc.) is to enter that system in human tournaments and
obtain an official USCF rating. Since several five-round tournaments are necessary
to establish a firm rating, this is a rather expensive method of determining playing
ability. TECH was rated at 1243 (Class D) by playing 38 games in USCF-rated tour-
naments. This data point could be used profitadbly as a benchmark for PDP-10 tech-
nology. §3 descnibes the USCF rating system and the way TECH's rating was
obtained.

In order to assess the effects of improved technology it would be useful to
have less expensive rating methods. Two methods of obtaiming an approximate
USCF rating are considered in this thesis: playing tournaments among TECH pro-
grams with different time allocations, and evaluating TECH's performance on a set
of trial problems calibrated against human players [Bloss 1972).

1.2.2. Comparison with professional play

Comparisons are made in §5 between TECH's analyses and master play in
order to compute the "Samuel coefficient® used by Arthur L. Samuel in his work
with checkers [Samuel 19671, and to work toward a method of comparing chess pro-
grams without direct competition. A simplified model of the decision-making pro-
cess in board games is suggested and an interpretation of the Samuel Coefficient 1s
derived from it.

The twenty games of the 1972 World Championship match between Bons
Spassky and Robert J. Fischer were selected as the primary set of master positions
for analysis because of their wide availability and because of the extensive annota-
tions of the games by other grandmasters. The complete games were used to elim-
inate bias and to obtain a reasonable mix of positions from each phase. TECH's
depth of search for each position was determined by allowing TECH 150 seconds of
CPU time to search as deeply as possible. Using this maximum depth TECH
evaluated each legal move, finding the number of moves rated better than the move
selected by Spassky or Fischer. An analysis was done to categonze the reasons that
TECH selected moves that it felt were matenally better than those of Spassky and
Fischer, since many of these moves represent an inherent limitation of the Technol-
ogy Program approach.

1.3. Comparison of TECH's search with theoretical models

A model of tree searching using the alpha-beta algorithm is presented in §4. The
mode! assumes a tree of fixed (but arbitrary) depth and branching factor; independent,
identically distributed values at the leat’ nodes; and a continuous distribution for the
values of the leal nodes. The relevance of this model to chess trees is explored. The
analysis of the model provides considerable insight into the efficiency of TECH's tree
search. In particular, it establishes that TECH's trees are much closer to perfectly ordered
(relative to TECH's own evaluation function) than to randomly ordered.

Since most of the time in TECH is spent searching the game tree, it is important to
determine the expected time of search. Previous work [e.g. Slagle and Dixon 1969] esta-
blished a lower bound for the size of tree searches using the alpha-beta algorithm by
assuming that the branches were ordered perfectly. Research presented here establishes
the expected size of trees with randomly ordered branches which are searched using
alpha-beta.

The analysis of this model includes investigation of the effect of the simplifving
assumptions by companng the results from the analysis with tree searches by TECH and
empirical observations concerning the mean and standard deviation of the number of

.



bottom paositions.

These results are applicable to all game playing programs which search any portion
of the game tree to a depth of 2 ply (half-moves) or greater.

1.4. Statistical methods

TECH is a collection of mechanisms that contribute to the performance individually
or (possidbly) as a group. This phase of the performance analysis consists of identifying
the important mechanisms, understanding the behavior of the program through a quanti-
tative analysis of these mechanisms and their interactions, and modelling aspects of the
program's behavior in terms of these components.

The core of §6 is a careful analysis of variance (ANOVA) for an experiment in
which a set of 34 tactical problems from Win ar Chess [Reinfeld 1958] were solved by
TECH with each of the secondary tactical mechanisms (aspiration level, killer heuristic,
“iterative deepening®, and mater switch) turned on or off. The positional module was also
included in this analysis (in and out) to determine whether there was a significant contri-
bution from positional heuristics to the solution of these problems.

The tactical and positional mechanisms in TECH are easily distinguishable. The
positional heunstics are localized and are treated in this thesis as a unit, although much
optimization could be performed on the parameters of the current set of heuristics. The
tactical mechanisms are analyzed individually.

The efficiency of the tactical mechanisms is particularly important, since most of the
time used by TECH is expended in the tactical search. This is the only area in which
additional time available (whether through an increase in the time control, improved cod-
ing, or more advanced technology) would yield an improvement in performance.

1.5. Relation to previous work

1.5.1. Brute force chess programs

In 1912 Emst Zermelo presented a paper proving that chess is in principle a
*solved” game [Zermelo 1912]. That is, by investigating all possible chains of moves
one can eventually get to positions which are known to be won, lost, or drawn, since
the rules of chess disallow infinite sequences of moves. Using set theory he demon-
strated that any position can be shown to be a win, draw, or loss for the player to
move, reasoning by induction on the length of the chain of moves to the known
won, drawn, or lost positions. The minimax procedure was implicit in his construc-
tion.

Practical principles for chess programs which search to a fixed depth and apply
some evaluation function were described by Claude E. Shannon [1950] and labeled a
*Type A® program. Shannon characterized a Type A program as a slow, weak player:
slow because of the combinatorial explosion, and weak because of the shallow search
and evaluation at non-quiescent positions. A group at Los Alamos [(Kister et al.
1957] implemented this strategy producing a slow, weak program.

Shannon next characterized a “Type B" strategy as (1) examining forceful vari-
ations as deeply as possible, evaluating only at quiescent positions; and (2) selecting
the variations to be considered so that the program does not explore pointless varia-
tions. TECH does evaluate only at positions which are quiescent with respect to
immediate matenial loss, fulfilling the first requirement of a Type B program. The
second requirement refers to what has become known as “forward pruning,” or
removing some branches of the tree based on a superficial search or evaluation
rather than backed-up values from the terminal evaluation function. TECH does
not use forward pruning. (Although the alpha-beta algonthm fulfills the second
requirement literally, it is not useful as an identifying characteristic, since alpha-beta
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is risk-free and could be used profitably in any chess program which does a search.)
TECH falls between Shannon’s Type A and Type B classifications.

1.5.2. Genesis of TECH

The surprisingly good performance of a Type A program (written for a Varian
620/1 minicomputer by K. King and C. Daly of Information Displays, Inc.) in the
First Annual Computer Chess Championship led Allen Newell to formulate the
basic idea of the Technology Program. This concept was enlarged on by the author
and Hans Berliner, and programmed by the author.

1.5.3. Alpha-beta algorithm

Much of the work reported here on the alpha-beta algorithm was performed by
the author for a joint paper with Samuel H. Fuller and John G. Gaschnig [Fuller,
Gaschnig and Gillogly 1972). It is an extension of the work of J. R. Slagle and J.
K. Dixon [1969]. Slagle and Dixon presented analysis of the alpha-beta algorithm
for perfectly ordered trees, and gave empirical results based on the game of Kalah, a
game with simple rules for which an extremely good evaluation function is known.
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2. The Technology Chess Program

A thorough understanding of an Al program includes an understanding of the individual
components of the program and their interrelationships. This section describes in detail the
mechanisms and heuristics comprising TECH, providing a framework for the analyses to be
performed in later sections.

2.1. Basic design

TECH is designed as a chess program of very simple basic structure, requiring only a
short time to be programmed on any machine. This ease of implementation makes TECH
a good benchmark and sparring partner for more "intelligent® programs. This benchmark
would improve as computer technology advances. The design philosophy of the Technol-
ogy program is discussed more fully in [Gillogly 1972).

2.1.1. Brute force search

TECH is designed around a brute force search of all legal moves to some fixed
depth. Given an initial position, ail potential moves are generated. Each move s
tried in turn, and all potential moves in the resulting position are generated. This
process is continued until reaching a maximum depth chosen in advance, usually
five ply (half-moves) in the middle game.

For efficiency the moves generated are not checked to determine whether the
king of the side to move is in check after the move is made, resuiting in an occa-
sional investigation of illegal moves. This condition is discovered one ply deeper,
when the king is captured. The effectiveness of this simplification is considered in
§6.2, where variations of TECH that check the absolute legality of moves are among
the programs investigated.

The simplification made possible by considering all moves in each position is
the elimination of detailed evaluation of intermediate positions. In order to elim-
inate irrelevant moves or to select only relevant ones (forward pruning) a program
must apply considerable chess knowledge at each position. This evaluation can be
costly in program time and programmer effort. Most programs, unlike TECH,
employ some {orm of forward pruning.

2.1.2. Quiescence

After reaching the maximum depth care must be taken to ensure that evalua-
tion does not take place in a turbulent position. A suitable brute force method of
forcing quiescence is used in TECH: all chains of captures are extended until & paosi-
tion is reached where no capture is possible. In each non-quiescent position at or
below the maximum depth all legal captures are generated. In addition, the "null
move" is one of the options for the side to move. That is, he can choose not to cap-
ture if that is more favorable than any capture at his disposal.

A more usual method of Quiescence evaluation (e.g. [Gillogly 1970]) is to
consider all immediate attacks and pins, and attempt to decide statically how much
material is en prise for each side.

One useful extension to TECH's quiescence algorithm would be to extend in
addition all moves that check and that escape from check. In the latter case no "null
move® would be postulated for the side to move, since he would have no choice dut
to escape from check. This would enable TECH to find or avoid deeper forced
mates. Care would have to be taken to avoid extremely long sequences of checks,
unlike the chains of captures which are automatically terminated when one side's
men have all been captured.
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2.1.3. Terminal node evaluation

After reaching a quiescent position TECH evaluates it by assigning it the
current balance of material. Pawns are worth 100 points, bishops and knights 330,
rooks 500, queens 900, and kings more than all other pieces combined. The
material differences are accumulated incrementally through the tree, so that the final
evaluation is a simple assignment.

The time spent in position evaluation is completely negligible compared to that
for move generation. This is a8 result of the design decision to apply as little chess
knowledge as possible in the tree. An immediate improvement in performance can
be realized, however, by increasing the amount of terminal node evaluation until the
total time taken in position evaluation is large enough to be measurable. All that
extra processing would be essentially free. Further increases in the evaluation func-
tion would have to be traded for move generations.

2.1.4. Tree-searching discipline

TECH uses the standard minimax backing-up procedure with alpha-beta prun-
ing. Each successor S of a position P is evaluated in turn. If the value of S is the
best seen so far from P (from the point of the player to move at P) it is accepted in
the new best sequence (principal variation) and its value transferred to P. If the
opponent aiready has a better value than this at the next higher level in the tree,
then P, S, and all other successors of P are pruned, since the move leading to P will
not be chosen by the opponent. To put it in chess terms, the move leading to P has
been refuted by the move leading to S, so that no further refutation need be found.

This evaluation process is repeated recursively until a value and best move are
found for the initial position.

More thorough expositions of the minimax and alpha-beta procedures may be
found in §4 and [Nilsson 1971]. The contribution of the alpha-beta algorithm to
TECH's performance is found in §4. More detail on the mechanics of TECH's tree
searching is found in [Gillogly 1972].

2.1.5. Timing TECH’s individual components

The cost of each of TECH's components was approximated by timing a S-ply
search of a fairly complex middle game position, Position 3 of Fig. 4.8, using the
BLISS Timing Package [Newcomer 1973). The relative times are probably fairly
accurate for any general purpose computer. The absolute times show the speed on
Carnegie-Mellon's PDP-10B, a PDP-10 with KA10 processor capable of processing
0.34 mips (million instructions per second). The search took 637 seconds, some-
what longer than the average middle-game move.

Generation of legal moves at each position took the most time: 46% of the
overall time. Each individual move generation took 4.39 ms. Thus if the time for
move generation were shrunk effectively to 0, e.g. with a specially-designed
hardware move generator, the program would be able effectively to spend twice as
much time searching the position, gaining at most one mcre ply of search depth.

The mechanics of controlling the tree search, including performing the
minimax backup and checking for alpha-beta prunes, took 19% of the total time.
Moving up and down the tree (making and retracting moves) took an additional 24%
of the time (about 0.25 ms for each execution or retraction). As mentioned above,
the evaluation of a terminal position is trivial, since the only term is computed
incrementally as capture moves are made and retracted.
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2.1.6. Core requirements

TECH uses 17K for instructions and 12K for data on Carnegie-Mellon's PDP-
10B (K=1024 36-bit words). The core requirements for the different components
are roughly as follows:

Module instructions  data
Chess rules 1.5K 09K
Positional knowledge 25K 0.7K
Tree searching 1.5K 1.3K
Hashing (§2.3.2.3) 1.0K 44K
Table initialization 0.5K 0.2X
Interface to PDP10 0.5K 0.5K
File 110 1.3K 0.2K
English notation 25K 0.2K
Statistics hooks 42K 3.1K
User interface 20K 0.6K

2.2. Positional heuristics

The basic TECH design provides a good tactical chess programmung benchmark, but
does not play well because by the time something tactical happens it has a hopeless posi-
tuonal disadvantage. To circumvent this a positional analysis was added that sorts all the
legal moves at the top level only so that the positionally most desirable are considered
first. In non-tactical positions most top-level moves will receive the same backed-up
evaluation, 1.e. the same matenal value as before this move, so the first of the matenally
best moves will be accepted. The superficial positional analysis functions as a tiebreak tor
matenally equal moves. The positional analysis recognizes five phases: the opening, mud-
dle game, endgame with pawns only, endgame with pieces against the bare kKing, and all
other endgames. The heuristics used in the positional analysis were developed by Hans
Berliner.

The use of considerable chess knowledge in the positional evaluation is not con-
sidered to violate the "technology” approach, since it uses a negligible amount of tme.
The cost of the single top-ievel evaluation in the test position was 0.4 seconds, about .0o%
of the total time.

2.2.1. Opening

The opening is defined to be the first eight moves. The most important
heuristic in the opening evaluation is occupation of the center. Each square on the
board is weighted with a desirabdility value ranging from O points for the corners to 8
points for the center (Fig. 2.1). Each move represents a net gain or loss of central-
ity. For example, N-KB3 would vield a gain of § points in centrality. This 1s multi-
plied by a prionity factor for the piece to move: 1 for a pawn, 4 for kmght, 3 for
bishop, 2 for rook, 1 for queen and -1 for king. Thus N-KB3 would have a final
score of 20 points for centrality. Notice that the King is encouraged t0 move away
from the center in the opening, since its center-tropism factor is negative. Thus
heunstic alone dictates a very reasonable opening with rapid development.

Each move is given a final positional score of the centrality term plus the value
of each of the following heuristics which applies to it:
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Fig. 2.1: Center control array
Pawn from K2 to K4: 30 points
Pawn from K3 to K4: 2 points
Pawn from Q2 to Q4: 20
Pawn from Q3 to Q4: 2
0-0: 30
0-0-0: 10
N-R3: -15
Piece to K3 or Q3 blocking a pawn: -50
Piece moving from king side: 2
Capture with pawn toward center: §
Capture with pawn away from center: -3
Pawn capture leading to multipled isolated pawns: -10
Wing pawn advance: -10
Capture unsupported center pawn: 50
Capture supported center pawn: -15

2.2.2. Middle game

The middle game begins with the ninth move, by which time both sides have
usually finished their development. It continues until one side has less than 1950
points worth of material, excluding the king (each side has 4020 in the initial posi-
tion). For example, a position in which each side has at least the equivalent of a
Queen, Rook, Bishop, and three Pawns would be a middle game position (2030
points), but it would be an endgame position if one more pawn were lost (1930
points). The center control heuristic is still used, but the prionty factors are slightly
altered:

P=3 N=d4 B=3 R=2 Q=1 and K= 1.

Since most pieces have found their best squares by the middle game this factor
has less influence than in the opening. Each move is credited with a mobility term,
which is the number of potentially legal moves available after the move is made.
Movement of a piece into the opponent's king field (see Fig. 2.2) is rewarded in the
same way as the center control heuristic, and the net gain is again multiplied by the
priority for that piece. This heuristic occasionally results in a King-side attack.

The pawn heuristics are the same as in the opening, except that advances of
wing pawns get -5 instead of -10. Castling values are the same as in the opening. If
TECH is ahead in material, piece captures get 10 points more. Moving a piece
which blocks the KBP or QBP is rewarded with 5 points.
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Fig. 2.2: Middle game king field

2.2.3. Endgame with pawns

The most important goals in pawn endgames are advancing and blocking
passed pawns. A passed pawn is a pawn that cannot be blocked by an opponent’s
pawn on its own or an adjacent file. Each move is credited with the net gain in the
passed pawn field shown in Fig. 2.3. This allows TECH to escort the pawn (if 1s
own) or block it (if the opponent’s). For example, if TECH’s king is 2 squares in
front of its own passed pawn, it receives S points; if 2 squares in front of the
opponent’s passed pawn, it receives 7 points. If it is adjacent to a passed pawn of
either color, it receives 12 points. The king field (Fig. 2.4) and center control arrays

are used only for king moves.
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3] 5|48] 5|3
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Fig. 2.3:

down the page.

Pawn endgame passed pawn field
The value shown is the value of the king position relative to
the passed pawn (own/opponent’s) as the pawn is moving
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Fig. 2.4: Pawn endgame king field
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Pawn moves are weighted by the rank of their destination and by whether they
are opposed:

Rank Opposed Unopposed

3 2 3
4 1 S
S 3 10
6 4 13
7 - 23
8 - 80

If TECH has more than one pawn on a file, only the first is given this bonus; the
other pawns lose 10 points.

2.2.4. General endgame

As in the pawn endgame, TECH's main goal is to promote. The pawns are
given the same weights for advancing as in the preceding section. The material of a
pawn is raised from 100 to 120; if TECH has 2 or less pawns, they are worth 190
each. A move which places a rook behind a passed pawn of either color is rewarded
with 15 points. The center control term uses priorities of

P=0, N=4, B=3 R=1, Q=1 and K= 4.

This encourages the king to centralize. TECH also uses the king field mask (Fig.
2.5) to minimize the distance between kings. As in the middle game, the mobility is
added to the score for a move.

4| 4| S| 6| S| 4
§[10(10[ 10| 8
10{10[10]| 10] 10
1I0]10] K| 10|10
101 10{ 10} 10| 10
§|10[10]10] 8
4 4 S| 6 S| 44

PRV AR-J R RN
Sajlnionlwn &l

Fig. 2.5: General endgame king field

2.2.5. Endgame with pieces

Unlike the other forms of endgame, TECH's goal in the endgame with pieces
is to drive its opponent’s king to the edge in crder to deliver mate. This is achieved
by doing a small (2 ply) tree search and using as an evaluation function:

e  -32-opponent’s king location on the center control field (Fig. 2.1)
e  2-opponent’s king location in TECH’s king field (Fig. 2.6)

e TECH's king location on the center control field, and
@

the sum of TECH's piece locations in TECH's king field divided by the
number of TECH's pieces (to keep pieces near the king as a tiebreak).

This method of forcing the king to the side of the board is due in part to Slate,
Atkin, and Gorlen (authors of CHESS 3.5, the Northwestern program).

2.3. Secondary mechanisms

A number of heuristics have been added to TECH to (1) make full use of available
time, (2) improve the efficiency of the tree search, and (3) capitalize on situations where
it is ahead in material.
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Fig. 2.6: Piece endgame king field
2.3.1. Capture sort

The greatest time savings in TECH over the basic design resulted from sorting
captures of the most valuable pieces to the front in any group of legal moves
searched. The alpha-beta algorithm prunes the maximal number of branches when
the refutaton to a bad move is found early. Since the refutations for most bad
moves are captures, the capture sort is quite effective. In some positions the savings
in CPU time s more than three orders of magnitude. The capture sort heuristic
ook 4% of the total time in the test position (see §2.1.5). An individual capture
sort took 0.39 ms.

2.3.2. Time allocation

The primary difference between tournament and "friendly” chess games s the
use of a clock. Each player is required to make a certain number of moves within a
given time (typically fiftty moves in two hours), after which further time controls are
specified. In order for TECH to take fullest advantage of the power of its host
machine it must make use of the tume at its disposal as fully as possible without
overstepping the time limit. If the time limit is exceeded (indicated by a flag on the
clock face dropping) the player immediately forfeits the game.

2.3.2.1. Maximum time for the move

The first step in TECH's tume allocation algorithm s the decision of how
much tme to spend on a particular move. Since the available time can be dis-
tributed among the moves remaining betfore the time control, there i1s consid-
erable room for sophistication. TECH's allocation is rather simple, though.
The opening (defined to be the first 8 moves) is searched to 3 ply. For other
moves the average time per move is computed by dividing the time remaining
(less ten minutes for a safety factor to cover the mechanics of typing moves
and operating the clock) by the number of moves remaining. If TECH s in
the first two-thirds of its time control (e.g. has played less than 34 moves of a
S0-move time control) the average time is multiplied by 1.75 to get the time
allotted for this move. If TECH is in the last third of its ume control or in an
endgame, it uses the average time computed above. Finally, if it is in an
endgame where it is trying to mate the opponent's lone King, the average time
is divided by four unless the king has already been drniven to a corner and
TECH's King is near to help with the mate. Unless these conditions are met
there would be no mate for a deep search to find. More time is allotted for the
middle game because few moves in the opening have tactical opportunities,
while the endgame requires such a deep lookahead that a little more ume
would not help TECH very much.

For a more sophisticated approach each move could be considered indiwvi-
dually. In many cases an obvious recapture can be made alter a superficial
determination that nothing better is available, including the result of TECH's
search on the previous move. It s also possible that non-tactical positions may
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be identified, and the positionally best move be made after a minimal search.
In each of these cases, though, there is danger that a deeper search would
reveal a better opportunity. Because of this tradeoff the simpler approach has
been used so far in TECH.

2.3.2.2. lterative deepening

Aflter selecting the maximum amount of time to be spent on the current
move, some means must be found to ensure that the time is not exceeded.
Previous versions of TECH attempted to use the times for the last several
moves to estimate the time needed for the next move at different depths. If
TECH used an odd depth for the previous search it was estimated that it would
take seven or eight times as long to get one ply deeper [Gillogly 1972); if an
even depth, then only three times as much time was needed to go to the next
deeper search -- on the average! Using these planning factors TECH would
decide how deeply it should be able to search for the next move. Unfor-
tunately, many things can go wrong with this approach. The most disastrous
problem is that something tactically complex resulting from the opponent’s last
move may result in a longer search on the current move. This problem caused
TECH to forfeit several games by overstepping the time limit.

The method currently used to ensure that the time for the move is not
exceeded 1 call “iterative deepening.” It consists of doing progressively deeper
searches until the time is exhausted, checking every now and then (i.e. when
the value of another move three ply down in the tree has been found) to see if
the time is up. When a search is finished the algorithm in the preceding para-
graph is used to see whether the next deeper search is likely to be completed
in the remaining time.T If this heuristic guesses wrong and the time exceeds
the maximum TECH has allowed itself for this move, the search is aborted
and the results discarded.

In the case where a search is aborted some of the information could be
salvaged if, for example, its deeper analysis shows that the move chosen at the
previous level is bad. This information is not used in the current version of
TECH.

2.3.2.3. Hash table for iterative deepening

The iterative deepening method for avoiding time forfeits requires more
time to search a given position: the time for the final search and the times for
each shallower search from one ply on up. However, some of the work done
on shallower searches can be used in deeper ones to speed the search. In par-
ticular, all "good moves" (those which were the best at their level or which
were responsible for pruning the tree) are saved in a hash table, to be retneved
and tried first in the next deeper search if they are encountered. If they are
found to be useful in the new search they save at least a move generation
(since they are guaranteed to be legal in the position) and at best the explora-
tion of a large subtree. Note that it is not practical to save all the moves in the
tree, since a typical middle game search can explore hundreds of thousands of
moves.

The hashing method used is due to Zobrist [1970]. The hash table size is

a power of 2. There are entries in the table for a check hash and a move. An
auxiliary two-dimensional table is initialized with pseudo-random numbers, one

t Historical note: J. J. Scott [1969] first used this method (at every other ply) 1o speed up the search by
reordering moves. The author used it for ume allocation 1in 1972 1t was again discovered independently by
Slate and Atkin for the Northwestern Program
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for each possible piece on each of the 64 squares. The hash code of any posi-
tion is then the eXclusive OR (XOR) of the random numbers representing the
pieces on the squares in the current position. Additional terms for castling
rights and en passent possibilities are included.

The advantage of this hashing method is that the hash code for a given
position can be obtained incrementally from that of its parent position. In the
case of a simple move, the piece being moved is removed from the hashcode
by XORing its old position, then replaced on its new square by XORing its new
position into the hashcode. This can be done in a very few operations. Nor-
mal hashing methods would require something to be done to all squares that
contain a piece, a much costlier operation.

Part of the hashcode is used as an address in the hash table for the posi-
tion, and the remainder for the check hash. In order to retrieve a position the
address and the check hash must both match. Since the pseudorandom

numbers are 36 bits long, the probability is # that the wrong data will be

retrieved for a position, or about 10~'2. TECH considers about 107 positions
per game, so that this kind of error might be expected once in 100,000 games.
The error has occurred and been discovered once in TECH's career. The
number of complete games played by TECH is not known, but I believe it to
be about 5000 (plus or minus 3000). This error rate is probably acceptable,
but could be reduced further by increasing the size of the check hash code to
two words.

This "pruner heuristic" nearly makes up for the extra searching of inter-
mediate depths. The overall effect of iterative deepening with the pruner
heuristic is analyzed in §6. Retrieving moves from the hash table accounted
for 4% of the overall time in the test position (see §2.1.5). An individual
move retrieval takes 0.3 ms. The time for putting moves in the hash table was
less than 1%; individual move storage took 0.07 ms.

2.3.3. Opening book

The opening heuristics described in §2.2.1 are supplemented by a small book
of responses to positions that have given TECH trouble. The book now consists of
about 70 positions in which TECH would make a move known to be bad if left to its
own devices. The book has been resorted to only if the problem is not symptomatic
of an easy flaw in the opening heuristics. In §6.3.4 advantages and options for the
opening book are considered.

The implementation of the opening book is quite general, although not all of
the generality is exercised by the current small book. The hashing method used for
iterative deepening is used for the opening as well, so that all possible transpositions
are automatically found. If more than one move is specified in the position, one of
them is chosen randomly. Currently there is only one move per position.

The concept of a Technology program would certainly permit an enormous
opening book, making use of mass storage as well as brute force computation. At a
future date advantage may be taken of this option. With a 10'0 bit store, more than
108 positions could be stored. This would be suitable for storing all sequences from
the opening position to about 6 moves deep, assuming the best move is stored for
TECH and all moves are stored for the opponent. More to the point would be a
complete published opening book such as MCO-10 [Evans 1965]. A 10'2 bit store
would allow storage of about the first 7 moves, and a 10" bit store would reach to
about 9 moves. Unfortunately it would take about 10® years to fill the 10'* bit open-
ing book, allowing 10 minutes of computation time per move. A 10'° bit store
would be quite adequate for the largest practically computable opening book as well
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as for storage of the "pruner heuristic® hash tables for all positions encountered in
the search.

2.3.4. Draw by repetition

The ability to detect an opportunity to seize or avoid a draw by repetition is
essential to a well-rounded chess program. Several "won" games have been drawn
by repetition at Computer Chess Championships. Programs tend to achieve a local
maximum in their evaluation functions and then oscillate, seeing nothing aclive to
do. A draw by repetition mechanism will force the program to try something else,
and the new try might eventually lead to the right idea in the position.

TECH uses the hash table to detect draws by repetition: each move actually
played in the game is stored in the table, indexed by position. The number of
occurrences of the current position in the game so far is kept. If a move at the top
or second level of the tree results in the third occurrence of a position, a search is
done to determine whether that draw should be claimed or avoided.

This method of detecting repetitions is considerably better than simply seeing
whether a piece has been oscillating, since a position may be repeated by a different
sequence of moves. It is still not perfect, though, since it should decide whether it
is more favorable to break the pattern before the second occurrence of the position
rather than the third. Further, it would be pleasant to detect repetitions within the
tree search and immediately evaluate the position as drawn. This, again, will wait
for future versions of TECH.

2.3.5. Using the opponent’s time

A program that relies on raw computing power for its performance should
make as full use as possible of all the time at its disposal. This should include the
time when the opponent’s clock is running.

After making its own move TECH uses a one-ply search to guess the
opponent’s move. It then begins its own search with iterative deepening, checking
frequently to see if the opponent’s move (or some other command) has been typed.
When the move comes in, the state of the search is saved, the opponent’s move is
made, and the check is made to see if TECH guessed correctly. If the guess is
correct, TECH continues with its computations; otherwise it discards the work done
so far and starts over.

This "think-ahead” heuristic greatly increases the complexity of TECH's control
structure. This is probably why no other chess program (so far as 1 know) makes
effective use of the opponent’s time. The control structure would be greatly
simplified if the program were written under an operating system like UNIX [Ritchie
and Thompson 1974] that allows programs to fork under user control. The main
program would then fork a process to begin investigating the trial move while it con-
tinues to monitor for the opponent’s move, retaining the option to go ahead with
either process depending on the outcome of the guessed move.

The savings due to this heuristic and possible improvements are discussed in
§6.3.3.

2.3.6. Aspiration level

In the usual tree search the initial best values so far for each side (@ and 8)
are set to —oo and 0. The first move found is then accepted as the best so far, no
matter how bad it is. Thus one scenario would show TECH doing a complete search
on a move that loses a queen, then on one that loses a rook, and so on, before com-
ing to the flock of moves that leave the material balance equal.
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The aspiration heuristic sets the initial values of a and 8 to just less than the
current material value of the position from the point of view of each player. This is
equivalent to assuming that a move has already been found that is slightly worse
than staying even. Then the moves that lose material will be pruned rapidly and the
moves that stay even (or win material) will be reached sooner.

The aspiration heuristic will fail if and only if the side for whom it was used is
about to lose material. In this case no move is found with a value of even matenal
or better, so that all moves are pruned. In this case the search must be started over
with the aspiration level reset to a more realistic value (e.g. —oo).

2.3.7. Killer heuristic

The killer heuristic (e.g. [(Greenblatt 1967]) is also used in TECH. It suggests
that a move which generates a prune in one set of moves may also generate a prune
in the adjacent set (first cousin positions) so that this "Killer" move should be tried
first. As discussed in §6, the Killer heuristic is not particularly effective in TECH. A
variation used in the Northwestern program (CHESS 3.5) placed the killer second
rather than first, more credence being given to the static evaluation than to the
Killer.

2.3.8. "Mater" switch

The "mater” switch 1s a user-settable switch that forces TECH to check for
absolute legality of moves whenever a set of moves is generated. In the normal
mode (mater switch off) moves are not checked to see whether they leave the King
in check. This condition is detected one ply deeper when the King is actually cap-
tured. Turning the mater switch on costs considerably more (15.24 ms for move
generation instead of 4.39 ms), but allows mates to be detected one ply earlier. This
tradeoft 1s explored in §6.

2.3.9. Directional heuristics

When TECH is ahead in material a top-level mechanism modifies the values of
TECH's pieces in the terminal evaluation function to encourage trading pieces. If
TECH is ahead by 200 points (2 pawns) or more, the new value of a piece (not a
pawn) is computed by the formula

opponent's matenal
TECH's material

so that TECH's pieces may be worth as little as 60% of its opponent’s pieces.

Another situation where the unmodified TECH shows little directional ability
occasionally appears in an endgame. If TECH can capture material that cannot be
immediately defended, it may skip the capture for the present, knowing it can be
made later, and circle around the doomed pawn with its king. To circumvent this
"deferral problem® a few points are awarded for capturing material sooner, so that
TECH will go for the opponent's throat immediately and get on with the next
subgoal. This heunstic is usually correct, but may occasionally result in relieving
tension in positions where the opponent should be kept under pressure. Most of
these situations would be beyond TECH's strategic ability in any case.

new value = old value - max(.6,

Gathering statistics
TECH has many options for collection and display of statistics. The number of

move generations and branches at each level are collected, as well as the number of bot-
tom positions, CPU and real time, successful and unsuccessful Killers, King captures, and
aspiration failures. The more expensive statistics (e.g. bottom positions) may be turned
off with a compile-time switch to save time in tournament situations. TECH has facilities

.
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for saving games and parts of games on disk or DECtape, including an autosave feature to
provide backup during a tournament game. TECH can be run to collect statistics
automatically on stored games. For the analysis using the Fischer-Spassky match in §5
TECH was run automatically to collect relevant statistics on each game.

Another compile-time switch enables TECH to be used as the environment and
semantic expert for the speech understanding program Hear-Say | [Reddy et al. 1973].
The switch suspends the a—8 algorithm at the top level of its guess about the opponent’s
move, so that a likelihood can be assigned to each move. This likelihood is used to gen-
erate and test hypotheses about the opponent’s utterance.
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3. Establishing and using a USCF rating

The most widely accepted chess rating method is the system developed by Arpad Elo
[1966] [1972] and used by the United States Chess Federation (USCF). It is therefore of
interest to determine the USCF rating of a program intended to be used as a benchmark. In
March, 1971 TECH played two games against a 1968 version of the Greenblatt program
[Greenblatt 1967], winning one game and drawing the other.t This suggested that TECH had
attained a sufficiently high level of performance to participate meaningfully in human tourna-
ments. As TECH played in more such tournaments several other attempts were made to utilize
and validate the rating thus established.

3.1. An official USCF rating

It is difficult for a chess programmer or other observer to estimate objectively the
USCF rating of a program. For this reason an official USCF rating was obtained for
TECH by actual competition in human tournaments. Before competition TECH's rating
was thought to be around 900 or 1000, in the lowest level of human tournament perfor-
mance (see below). This estimate turned out to be about 300 points low, more than a
class difference. More recently the Northwestern Chess Program was thought to be about
a 1650-rated player, but performed at least 300 points higher at the Paul Masson Tourna-
ment in July, 1976 using a more powerful computer than its usual host [Berliner 1976).

3.1.1. Basis of the USCF rating system

The purpose of a rating system is to evaluate the performance of each indivi-

dual and to assign ratings which reflect the probability of one player outperforming
the other. Two rating scales with this property are used: the ratio scale and the
interval scale. With a ratio scale, if the ratio of the ratings of two pairs of players is
the same, then the probability of the higher rated player of each pair winning is the
same in each pair. In an interval scale the difference between ratings, rather than
the ratio, determines the probability of the higher rated player winning.

3.1.1.1. Parameters of the USCF rating system

The USCF rating system uses an interval scale. Each player P, is
assumed to have a performance distribution with mean u, and standard dewia-
tion o,. His performance is an abstract concept which reflects how well he
plays against various opponents. He will typically perform above or below his
average.

It follows from the central limit theorem that the differences of pairs of
ratings drawn from two such distributions will be normally distributed. The
mean of the distribution of differences is u p=pu y—u; and the standard devia-

tion is
ap-\/o'fﬁrf.

An assumption made for the USCF rating system is that o, = o p for all j
s0 that o p=0o+/2. The value o =200 is chosen arbitrarily and represents the
class difference.

To find the probability of one playver winning a single encounter, we con-
sider the performance level of each player to be drawn from his own normal
distribution with standard deviation 200 and with a mean of his own rating.
The probability of the lower-rated player is found from the cumulative normal

R ——
t In 1973 TECH. playing at tournament time controls, lost one game and drew another against the current
version of the Greenblatt program playing at a fast time control. The current Greenblatt program s clearly a
better player than TECH




distribution for the rating difference between the players. For example,
assume the players are rated 150 points apart. This is about 0.53o . A stan-
dard table of the normal distribution shows that the area under the normal
curve o the 0.53 point is 0.70. Then the higher-ranked player has a probabil-
ity of 0.70 of winning a single game. Fig. 3.1 shows the probability of
expected outcome of games between players with various rating differences.

The consistency of the USCF rating system was tested [Elo 1966] by
comparing the actual score of each player in the Western Open Tournament
(St. Louis 1965) with his expected score based on his rating and the ratings of
his opponents. Elo found that of the 97 rated players in the competition, 73
had differences of 1.5 or less (each played 9 games), and 58 had differences of
1.0 or less. This was regarded as a favorable comparison with theory.

3.1.1.2. Performance ratings

A player's performance rating is a measure of his performance against a
series of rated players. His performance against them, defined as wins/total
games (where a draw is counted as half a win), is used with the cumulative
proportion curve to compute D, the difference between his rating and that of
his opponent. The opponent’s rating R is taken to be the mean rating of the
opponents. For example, a performance of 16% corresponds to the lo point
on the cumulative proportion curve, and would thus yield a rating of R —ov/3,
or about 283 points below the average of the competition. The USCF system
currently uses a linear approximation to the normal cumulative distribution to

estimate performance ratings, i.e.
R, = Rc+40022E

3.1.1.3. Operational USCF rating formulas

The performance rating is used by the British Chess Federation as the
sole rating method, computing new ratings each six months and using the old
ratings of the opponents to determine a player’s new rating. The USCF rating
system uses the performance rating for players who have played fewer than 17
games. For players with established ratings the new rating is determined by a
set of rules and corrections designed to track effectively as a player's strength
increases or decreases. The form is related to the performance rating, but the
performance in the most recent event is weighted more heavily than the old
performance. This is done by formally assuming the old rating is a perfor-
mance rating based on Ng—N games (where N is the number of games in the
current tournament), and that the opponents’ rating R is the same for dboth
sets of data. Then the new rating (computed as a performance rating) is

400 W Lonusd)
Ny
o S0(War L) | 400W L)
No No
o NN $00(WoLy) | 40(Won~Lo)
No No—N No

Rew=Rc+

- R

- R

Assuming the ratings of the opponents are the same before and after these
games, i.e. Re= Re = Rc_ . we have

Ng-N N No=N 400(Wo-Lyo)  400(W . —~L,.)
Reew= Rewt Wolen* =N, Ne=N No
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No=N| 400(W,~Lu)| N 400( W =L o)

No [Pt T NeN TNt No
If R,y was a performance rating based on Ng—N games, then

R
g NN, N 2 e 400 L)
T Ne ™' Ny N No
N
R -R
NN o L Rw... Mo N, S00(Wo— L)
Ny N, No No
3D 400(W,..-L..)
-R.“+ No + — No

This is the basic form used incrementally to compute the new rating,
except that the difference D is not allowed to exceed 350 points. N is chosen
to be 25 for players rated below 2400 points, and 50 for players rated above
2400 points, based on the assumption that the ratings of very good players are
more stable than those of weaker players. Modifications are made to this value
if the player gains more than 32 points in the event or if his initial rating was
very low. These modifications are described in [Elo 1972].

3.1.1.4. Performance classes

The assumed standard deviation of 200 USCF points is taken as a class
difference. The categories of piayers are designated as foilows:

>2399 Senior master
2200-2399 Master
2000-2199 Expert
1800-1999 Class A
1600-1799 Class B
1400-1599 Class C
1200-1399 Class D

<1200 Class E

3.1.2. TECH's USCF rating

Between April, 1971 and September, 1972 TECH played a total of 38 officially

rated tournament games. The result is shown in Table 3.1. TECH’s current USCF
rating (rating list of July 1973) is 1243.

3.1.2.1. Mechanics of play

TECH is operated at a human tournament via a portable terminal (Datel
or Execuport) connected to a C-MU PDP-10 over normal phone lines. When
the opponent makes his move and punches his clock, the operator inputs the
move on his terminal. TECH’s move is typed in English notation; the opera-
tor makes the indicated move and punches TECH's clock.

Although the USCF has formulated no specific rules for computer play in
tournaments, certain standards have been adhered to in TECH's games. Dur-
ing a game the only adjustments made to program parameters by the operator
are the times remaining on each player’s clock. When a draw is offered by the
opponent (either explicitly or by repetition), the program must make the




decision without the operator’s assistance.

It is believed that as programs improve it will be necessary for the USCF
to clarify certain issues concerning competition by programs in tournaments.
For example, under what conditions should a series of programs (e.g.
Northwestern University's Chess 3.0, Chess 3.5, Chess 4.0, Chess 4.5) be
assigned a USCF rating as the same entity? Although the rules state that a
player may not use books or writing material to help decide on his move, most
programs have a perfectly explicit book of openings programmed. Finally, the
extent of allowed operator intervention must be defined.

3.1.2.2. USCF tournaments and results

TECH's performance in USCF-rated tournaments is shown in Table 3.1.
The USCF rating shown for an event is the earliest rating which includes the
games in that event. The estimated performance rating is based on the ratings
of TECH's opponents published immediately after the event. The disparity
between the estimated performance rating and the official USCF rating is due
to the delay in the rating list and to the players for whom no rating was avail-
able at the time of the tournament.

TECH's USCF rating is firmly established with 38 games, and is in the
middle of the class D category. The fair stability of TECH’s rating suggests
that the modifications made to TECH over the period May 1971 to September
1972 did not radically increase TECH's strength. Some of the more important
modifications were the detection of draws by repetition (June 1971), the small
book of opemings (about May 1972), and iterative deepening (August 1972).
The iterative deepening was introduced to prevent losses due to time forfeit.

[t is hoped that other impiementations of TECH (e.g. TECH I, written
at MIT by Alan Baisley) will be entered in tournaments and establish ratings.
Particularly interesting would be the vanation of rating with the host machine.
This issue will be explored in §3.2.

Date Event Rounds Pts  Est. perf. raung USCF raang
May 1971 Golden Triangle Open ) 1.5 1189 1147
Jun 1971 Fred Thompson Memorial 5 2.0 1304+ 1247
Sep 1971 Walled Knights Open 4 1.5 1355
Oct 1971 Gateway Open S 2.0 1344 1286
Nov 1971 Camegie-Mellon Open S 2.0 1224% 1277
Apr 1972 Mark's Coffeehouse Open 5 20 1237 1262
Sep 1971¢  Piusburgh Industrial League 2 1.0 1355 1252
Sep 1972 Penns. State Championship 7 3.0 1328 1243

Total 38 15.0

tOne win was by forfeit, which is not rated in the USCF system.

$Out of order here because of delayed reporting.

Table 3.1: TECH's USCF-rated events

3.1.3. Insight from the tournament games

Tournament games offer an opportunity for analysis that i1s not available in
more casual games. They are played under relatively controlled conditions: there is
no backing up or terminating without a winner being determined. and there is little
experimentation where an opponent will try a move “just to see what the program
will do." For these reasons it is of considerable interest to make a detailed inspection
of TECH's behavior in these games. The effects of specific mechanisms on the
tournament games are considered in §6.3.
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Of the 38 tournament games, TECH won 13 (2 by default), drew 4, and lost
21. Of the games TECH won, 9 were decided on tactical grounds in the middle
game or early end game. In these games either TECH retained its material advan-
tage until mate or an obvious win, or the opponent resigned immediately. Its other
two wins were decided in the end game: one was adjudicated in TECH’s favor
(TECH might not have been able to find the win), and the other was won in a pawn
endgame.

Of the 21 games TECH lost, 14 were decided in the middle game. Of these, 2
were lost when TECH ran out of time (one of these games was already clearly lost).
The problem with overstepping the time was solved with the "iterative deepening”
heuristic (§2.3.2.2.). Two games were lost because TECH could not see to the end
of a tactical combination, and two more were lost because of the horizon problem
(See, for example, [Berliner 1973]). The remaining 9 middle games were lost
because of threats against TECH’s king: sequences of checks leading to a loss of
material, mating threats, and forks beyond TECH’s depth. This is clearly an area
that requires work. At the very least TECH should recognize king threats as early as
other tactical threats, i.e. use the "mater heuristic." Some sequences of checks
should also be investigated, being careful to avoid consideration of arbitrarily long
sequences.

The remaining 7 lost games were decided in the end game. One loss was due
to a king threat in the early end game; the other 6 were due to a lack of strategic
ability in various kinds of pawn end games. This problem is likely to remain with
TECH-like programs well into the future, since many end game problems are much
too deep to solve with a brute force tree search. The goal of a technology program
should be to win enough material in the middle game to enable it to survive an end

" game with its limited strategic ability.

3.2. Utilizing TECH’s USCF rating

Since the rating process is expensive in time and effort, it is desirable to use it as
fully as possible. An attempt was made to rate other versions of the program approxi-
mately using the tournament version as a standard. The results and caveats are presented
in this section.

3.2.1. Rating a tournament of programs

Elo has shown [1966] that a group of players can be rated with the USCF rat-
ing system if one player has a valid rating. The assumption is made that the stan-
dard deviation of the performance of the individuals in this group is the same as that
of the general chess-playing population (see §3.1.1.1.), i.e. that o =200. TECH’s
performance, in the 38 games played, is not inconsistent with this assumption. Elo
defines the performance in a single game as P=R +400-S, where R is the
opponent’s rating and S is 1 for a win, 0 for a draw, and -1 for a loss. Using this
definition of individual performance, the standard deviation of TECH’s perfor-
mances (again using the post-tournament ratings of the opponent) was 249. (The
mean performance was 1289.)

In a tournament among programs of very similar structure one might expect
the standard deviation of performance to be reduced. A program which could regu-
larly afford to look one ply deeper than its opponent would be able to evaluate pre-
cisely the opponent’s reply to each of his options, and thus have an almost insur-
mountable advantage. Playing against a human (or differently designed program)
the shallower program might be expected to perform relatively better than against a
similar deeper program. It is believed that this trend offsets to some extent the fact
that TECH’s observed standard deviation in performance has been higher than that
of the average human chess player.
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3.2.2. Some empirical support

A preliminary set of experiments lends some credence to the thesis that the
results of a tournament among similar programs provides a consistent pattern of q
results. A tournament was conducted among program variations with different
parameters. A number of games were then played between two sets of program
variations and a human of about the same chess ability.
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3.2.2.1. Program variations

In the first part of the experiment an attempt was made to rank programs ‘
with varying depth of search, quiescence checking, and positional knowledge
according to their playing ability. Of interest, for example, was how deeply a
program without positional analysis would have to search in order to beat a
program of some fixed depth with positional analysis. The range of the vari-
ables were (1) depth of search from 1 to 5 ply; (2) full or no quiescence
analysis; and (3) three positional modules: random pre-sort, full positional =
pre-sort, and a pre-sort using only the mobility resulting from each move. =
Thus there were 30 different program variations for this experiment.

3.2.2.2. Results of the preliminary tournament

Several assumptions were made to minimize the number of individual
matches that had to be made to rank the 30 program variations. It was
assumed that if two programs were identical except for the depth of search, the
program which could look deeper would play better; that quiescence yields a
better program (all else being equal); and that (all else being equal) a program
with the mobility positional module is better than one with a random positional
module, but worse than the ful] positional module.

The latter assumption was tested in a round-robin match between the
programs with quiescence at depth 5. The program with a random positional
module performed slightly worse than the program using mobility (3 draws and
1 loss of the 4 games); the mobility version did slightly worse than the one
with full positional (1 win, 1 draw, and 2 losses); and the version with full
positional was substantially better than the random version (3 wins and 1
draw).

Pairings were then chosen to determine as efficiently as possible the
extent to which positional search and quiescence could surpass a deeper search.
The results of the individual matches is shown in Table 3.2. Based on these
results the partial ordering shown in Figure 3.2 was derived.

3.2.2.3. Interpretation of the match resuits
Conclusions drawn from the partial ordering of Fig. 3.2 are (for the

range of depth in this experiment):

(1) A program without quiescence must look at least four ply deeper than
one with quiescence to achieve the same level of play.

(2) For a program without quiescence, all positional considerations are
washed out by greater depth.

(3) For a program with quiescence, positional analysis is worth one ply of
depth.

ihe latter conclusion in particular merits some study at greater search
depths. It may be true that positional analysis will be increasingly more valu-
able as the depth increases, and that as the program becomes more competent
tactically, its games will be decided on positional grounds.
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R =Random positional module
M = Mobility positional module
T =Positional module normally used by TECH

Q=Quiescence
F=Fixed depth

<n> =depth of search

RE vs ITF Qof2) JRQ vs ITQ QGS5of 9]
JRE vs 2TF  (Sof6) JRQ vs 2MQ (45009
4RF vs JITF  (Sof % TQ vs 3RQ  @Wof 9
SRF vs JTF (20of2) IMQ vs  2TQ (6 of 10)
ITQ vs SRF  (Qof2 dIMQ vs ITQ  @Sof®)
ITQ vs SMF Qof? SRQ vs 3TQ  QGofd
STE vs ITQ  (lof D SRQ vs 4TQ (ol e
RQ vs ITQ (65of 1D | SMQ vs 4TQ (Sofd) 1
4RQ vs 3IMQ (Sof® STQ  vs SMQ  (QQSof 4
SMQ vs  SRQ  (QQ5of4) | STQ vs SRQ  (3Sof4) |

Table 3.2
3.2.2.4. Performance of programs against a human

In order to lend credence to the thesis that a tournament among pro-
grams is meaningful, an unrated human of roughly the same strength as TECH
plaved against two pairs of programs. The programs chosen were ditterent in
design, but performed about equally well in the matches. The pars chosen
were (4RQ, IMQ) and (4MQ, ITQ). These pairs were selected because they
were of about the same strength as the human opponent and they used radi-
cally different positional modules. The pairs of programs were about evenly
matched (S ponts to 3 for the first pair and 4.5 to 3 3 tor the second)

In the first pair, the human played six games against each program and
won four and lost two against each.  In the second pair he plaved three games
aganst each, winning one and losing two in each match.

These results conform closely to the expectation prior to the matches: the
two programs in each pair performed equally well, and the par that was
thought to be better pertormed better.

3.2.2.5. Shortcoming of experiment

Although this expenment gained useful information about the relation-
ships of depth and positional knowledge to performance, it was imited because
the concept of time was not being captured. A program with a fixed depth of
four ply (with quiescence, say) would take a reasonable amount of time in the
middle game, but would move extremely rapidly (and badly) in the endgame
Proper budgeting of time is very important in a chess game, and it was felt that
further experiments should reflect this. An experiment that takes time into
account could be used to predict the behavior of a TECH-like program on a
faster machine, since it would more closely simulate performance in a USCF
tournament. The next section describes a moditied tournament design.

3.2.3. The technology curve - varying allotted time

In order to assess the effect of changing the time allocation on TECH's playing
ability, a series of matches was plaved between programs with different time allot-
ments. In each case the programs were identical except for the tme difterence. The
time was allocated according to the rules in §2. [ |
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This simulated the effect of improving computer technology [see Gillogly
1972). Clearly a factor of two increase in allotted time would correspond to a factor
of two increase in speed due to a technological advance or improved coding. Using
Elo’s formulae to rate the contestants in these matches, a curve of USCF rating
versus speed of play may be obtained. This curve is pegged to the real world with
one data point: TECH’s performance in USCF-rated tournaments with a time control
of 50 moves in two hours. The graph of USCF rating versus speed of play is the
"technology curve.”

3.2.3.1. Experimental conditions

The ideal range of allotted times for this series of games would cover
several orders of magnitude. Using the data point at TECH's current USCF
rating under time constraints of S0 moves in two hours, one would like to find
the USCF rating at 50 moves in (say) 12 minutes, 20 hours, and 200 hours.
For the largest time allotment the cost of the experiment would thus be over
one week of CPU time per trit (win, draw or loss) of information, assuming at
least 25 moves per side. This was felt to be exorbitant. The upper time limit
was taken at 50 moves in 180 minutes (3/2 normal TECH), with the major
emphasis on time controls less than the usual tournament restrictions. This at
least yields the slope of the technology curve around the current data point.
The time allotments investigated were 50 moves in 30, 60, 90, 120, 150 and
180 minutes. The “thinkahead” feature was not used since the two programs
were running on the same machine and would compete against each other for
computing time.

Five openings were used: Scotch Game, Petroff’s defense, a Queen'’s
pawn opening, Sicilian Defense, and the Bishop’s Opening. Both sides of each
opening were played by each program in a match, resulting in ten games per
match. In cases where one side could obviously force a win, the games were
terminated and adjudicated. Program variations with the same time allocation
were not played against each other.

3.2.3.2. Results of the matches
Table 3.3 shows the outcomes of the games played in this series.

30 60 90 120 150 180
1/4 TECH 30 | XX 4 1.5
1/2 TECH 60 6 XX 3 2.5
3/4 TECH 90 7 XX 6.5
TECH 120 8.5 751 3.5 | XXX 5 3
5/4 TECH 150 b XXX 4
3/2 TECH 180 1 6 | XXX

Table entry shows the number of games won by the program at left from the
programs listed across the top of the table (out of ten games).
Table 3.3: Matches of TECH vs TECH with varying time

Ratings were computed on the basis of these results by holding constant
the rating of the standard version (120 minutes for 50 moves) and iteratively
calculating the performance ratings until there was no further change. The
resulting ratings are shown as a solid line in Fig. 3.3. The dashed line
represents the ratings resulting from deleting the obviously anomalous result
of the 90 minute program against the 120 minute program.

The unexpected result in the 90 vs 120 match is due largely to random
effects. In several games the program with more time used it in uninteresting
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! positions and searched more shallowly at a critical time. In others neither pro-
gram understood the position and the 90-minute program happened to end up
on top. In any case the 6.5:3.5 result for the presumably weaker program is

| not wildly improbable. From Fig. 3.3 we would expect the 90-minute program

i to have a rating of 1150-1200, compared with the known 1243 rating of the

120-minute program. From Fig. 3.1 we see that this rating difference gives the

lower-rated program a probability of from 0.38 to 0.43 of winning a single
game (ignoring draws). If the probability is 0.43, then the probabilility is

about 15% that the lower-rated program will score 6.5 points or more in a

match of 10 independent games. While this probability is not high, it is not so

small that we should be greatly surprised when one match of eight has this
result.

The result is a rather linear increase in observed performance over the
range of time allowances tested, at a rate of about 80 USCF rating points per
additional half hour of USCF rating time. At this rate TECH's performance
would increase by more than one USCF class (200 points) if the allotted time
were doubled. The slope in this region indicates that the payoff for improved
technology is still rather high, and gives no evidence that the curve will flatten
out soon.

3.3. Indirect measurement of USCF ratings

Although the only direct method of measuring a USCF rating is to enter the chess
player in USCF competition, there are possible indirect methods. These include measur-
ing performance on a standard test calibrated against players with known ratings, and
evaluation of the chess player’s performance by a strong chess player.

3.3.1. A USCF-calibrated test

A test to determine the USCEF rating of a player based on his speed at solving
mating problems was developed by F. Donald Bloss [Bloss 1972].

3.3.1.1. Bloss’ experiment

Bloss tested 43 chess players with USCF ratings ranging from 1180 to
1976 (see Fig 3.4) on 2-, 3- and 4-move mating problems. Each player was
asked to record the solution to each of 42 problems and the time it had taken
him to reach the solution. If the player failed to solve the problem within ten
minutes, or if his solution was incorrect, his time for that problem was taken
to be ten minutes.

For each of these problems Bloss fit curves of the form
R=a-r® 3.3.1)

to the data, where R is the calculated USCF rating, t is the time required to
solve the problem, and a and b are determined by regression analyses. The
correlation coefficient between R and t was computed for each problem. Of
the 42 problems, 14 had correlation coefficients below -0.7 (negative correla-
tion indicates that players with higher ratings solved the problems faster) and
these were chosen to be the standard rating problems.

Bloss then tabulated corresponding ratings and times for each problem
over the range of S seconds to 10 minutes, with the standard error of estimate.
To find the approximate rating of an unrated player, his average score on the
14 problems is computed. Bloss asserts that the statistical methods used
ensure that the average rating will be within 150 points of the true USCF rat-
ing in the majority of cases. | agree that the test should be this accurate for
evenly developed human players, although a human who spends most of his
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chess time solving mating problems would undoubtedly score higher than his
USCEF rating.

3.3.1.2. Applicability of the Bloss data to TECH

A test such as this would be very useful if it could be applied effectively
to programs. It would greatly reduce the time required to establish a rating for
any program or program variation, providing almost immediate feedback on
any modification. The “technology curve” discussed in §3.2.3 could be
obtained by multiplying or dividing the solution times on the problems by a
constant factor and looking up the revised ratings.

Unfortunately there are several difficulties with this particular set of prob-
lems and data which make it less than ideal for establishing ratings for varia-
tions of TECH.

(1) All the problems deal with mating situations, and thus directly measure
only one dimension of a player’s tactical ahility. For rating human
players this is not so serious a restriction, since a tournament player
might be expected to develop strategic, positional and tactical abilities in
parallel, without undue emphasis in any particular area. TECH, however,
is a basically tactical program, and is correspondingly weaker in strategic
and positional areas than human players of its tactical ability.

(2) Of the 43 subjects in the experiment, only six are in TECH's class, and
only two are rated lower than TECH. This suggests that the data might
not be sufficient in this region. This effect is counteracted by the para-
graph above, which indicates that TECH's "mate-rating” is translated
upward.

(3) In the event that a subject did not finish the problem within ten minutes,
his time was taken to be ten minutes for that problem. As Bloss admits,
this imparts a bias to the data. The effect of this bias would be to pro-
duce a somewhat lower estimated rating for the player to be rated. This
objection holds for human players as well as programs, of course.

3.3.1.3. TECH'’s performance on the Bloss test

The problems were given to TECH in spite of these difficulties because
(1) they do provide a direct measure of one dimension of TECH's perfor-
mance, (2) they provide an opportunity to estimate the shape of the technol-
ogy curve for this dimension, and (3) the experiment is inexpensive. The
results are shown in Table 3.3.

The ratings are computed from equation 3.3.1 with the appropriate con-
stants a and b for each problem. In the absence of a better estimate, this for-
mula is also used when TECH's solution time was over ten minutes, since a
rating based on an artificial cutoff would be unrealistically high. TECH's mean
rating on the problems is 1520 (Class C).

One interesting trend is that TECH is considerably worse (relative to the
human subjects) at solving mates in 3 and 4 than at mates in 2. This is
undoubtedly due to the much bushier search tree used by TECH. De Groot
and others have shown that human players inspect very few moves in each
position, and often only one. Consequently the exponential growth of the tree
with increasing depth affects TECH more strongly than a human.

These data were used to compute the technology curve of Figure 3.5
according to the formula

4
R(=LFa 0 (332
r=|
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Moves  Depth TECH's
Problem to mate (ply) time Rating
20 2 4 48" 1627
25 2 4 1927 1464
30 2 4 90" 1628
35 2 4 29 1910
40 2 4 23" 1844
45 2 4 44" 1748
50 2 4 4 1711
SS 2 4 44" 1777
62 3 6 745" 1172
65 3 6 3y 1402
70 4 8 25200t 930t
75 3 6 5807 1414
80 3 6 2964° 1267
85 3 6 12797 1395

tEstimated time for completion is 7 hours based on
growth rates for this problem.
Table 3.3: TECH's performance on the Bloss data

where g, and b, are the coefficients computed by Bloss, ¢, is TECH's time on
problem i, and f is the technology factor. For example, if the speed of the
equipment were improved by a factor of two, the effect would be to halve
TECH's time on each problem.

This technology curve indicates that to improve by one USCF rating class
on this dimension of performance, TECH would need to be improved by a
technology factor of about 0.3, i.e. to run about 3-4 times as fast. On the aver-
age this is slightly less than the increase in speed needed to search one ply
deeper. (A factor of 25 for 2 ply implies an average of a factor of 5 for 1 ply -
see §2). The results from the tournament among TECH variations (§3.2.3.2)
suggested that less than a factor of 2 increase in speed would be sufficient for
improving by one USCF rating class. The difference in results is due to the
difference in the measure. Both effects may be correct, which would indicate
that a larger increment in speed is necessary to improve by one class from
1520, TECH's score on the Bloss test, than to improve by one class from 1243,
TECH's USCF rating.
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4. Comparison of TECH's tree searching with theoretical results

Searching trees of possible alternatives is a task common to a wide range of programs.
The performance level of these programs may depend largely on how much of the (typically
very large) tree is searched, so that the efficiency of the tree-searching algorithm is of critical
importance. Since TECH spends about 85% of its time during a tournament game in a straight-
forward tree search, any improvement in the search strategy can have a sizable effect on the
speed of the program. This section investigates the theoretical efficiency of TECH's tree
searching algorithm, a minimax search with alpha-beta pruning.

The analysis and estimates presented in this section are applicsble not only to chess trees,
but to any trees explored in adversary games of perfect information. TECH's trees are com-
pared against the best possible, worst possible, and average performance of a probabilistic
model. The precise derivation of the average performance of the model appears in [Fuller,
Gaschnig and Gillogly, 1973], and the results are summarized here.

More detailed descriptions of the minimax and alpha-beta algorithms may be found in
[Fuiier et al. 1973], [Slagle 1971], or [Knuth and Moore 1975]. Searching trees of possible
alternatives is a task common to a wide range of programs. The efficiency with which these
trees can be searched is of critical importance to such programs, since the trees are typically
very large.

4.1. The minimax algorithm

A game tree is initialized with the starting position in the game (or the current posi-
tion) as the root node. The legal moves are computed and the positions resulting from
those moves become the next level of the tree, or the first ply. This process is continued
until a terminal position is reached. Ideally the terminal position should be a position
where the game is over, so the winner can be determined, but for complex games like
chess it is impractical to carry each branch to its conclusion. Shannon (1950] estimates
that there are 10'% legal chess games; go probably has about 361! or 107 legal games.
Since an exhaustive search is out of the question, it is usual to stop at a position which
can be evaluated fairly easily.

The evaluation function for terminal positions is chosen so that high values
represent a gain for the first player ("Max") and low values are favorable to the second
player ("Min"). In Fig. 4.1 the values for each of the terminal positions of a hypothetical
game tree are shown. At the bottom level of any branch the player to move selects the
move most favorable to him; that is, Max finds the move with the maximal value, or Min
looks for the move with minimal value. Since the players are expected to choose the best
move at each level, and since the best move is assumed to have the highest value accord-
ing to the terminal evaluation function, the value of the position directly above the the
terminal positions corresponds to the value of the best move found. This process is con-
tinued, alternately minimizing and maximizing, until the values have been "backed up” to
the top level and the best move (according to the evaluation function) has been found.

The growth rate of the minimax algorithm is exponential: if there are B branches at
each level, then a minimax search to depth D ply would yield B terminal positions. For
chess a typical value for the number of legal moves in a middle-game position is 33,
Using the minimax algorithm a program would have to evaluate 1,500,625 positions in
order to complete a search to depth 4 ply. If the program were playing under tournament
conditions, where a typical time constraint is that 40 moves must be made within two
hours, this would mean spending a total of about 220 microseconds per position, including
the tree-searching overhead to reach each position. Clearly a minimax search to 5 ply
would be out of the reach of general purpose computers using current technology.
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4.2. Depth-first search and the alpha-beta algorithm

For very large trees it is impractical to Kkeep the entire tree in memory. Normally 1t
is searched depth-first; that is, a sequence of moves is explored unti! the bottom of the
tree 18 reached, whereupon the program backs up and considers the next closest position.
For example, a depth-first search of the tree of Fig. 4.1 would first expand the legal
moves in position P, then P, then P),. Having reached the bottom of the tree, it would
evaluate Py, and P,,;, back up the minimum value to P,,, then move over and expand
Py, After finishing the sub-branches of position P, it would move on to P, expanding
and evaluating in the same way. Using this method of organizing the tree search the
space required to store the tree grows only linearly with the depth of search.

The alpha-beta algorithm is a modificaton 0 the minimax search that identifies
branches that can be ignored ("pruned®) without affecting the final backed-up value or the
move chosen. For example, in Fig. 4.1, after investigation of P, and its subtrees, Py, 1s
evaluated and found to be 7. Since it is Min’'s turn to play at P,, the value at P, must be
less than or equal to 7. But since Max will choose among £, P; and P;, and since P, has
already been found to be 8, P; will not be chosen, and any further search of its subtrees
will be wasted effort. Thus P, and P,y are pruned with their subtrees; this is called an
"alpha prune.® Simularly, after P, has been evaluated, the search conunues 0 Py
Evaluation of Pj;, shows that the final value of £, must be greater than or equal to 12,
but since Pj, has been found to be 10, Min will not choose the Py, branch. Thus Py
and Py, are pruned: these prunes at odd depths are called "beta prunes.” Fig. 4.2 shows
the tree of Fig. 4.1 with the pruned branches removed. Note that only 11 termunal posi-
tions are evaluated instead of the 16 evaluated using the mimimax aljgonthm aione. A
mathematical definition of alpha-beta pruming may be found in [Fuller, Gaschnig and Gil-
logly, 1973] and an algorithmic definition in [Knuth and Moore 1975].

In the worst case alpha-beta pruning is ineffective: no prunes occur and all 87 of the
minimax branches must be explored (again assuming fixed depth D and fixed branching
factor B). The best case occurs when the branches are perfectly ordered with the best
investigated first each time. Fig. 4.3 shows the tree of Fig. 4.1 again, this time ordered so
that the best move appears first at each level. In this case 8 termunal positions are
evaluated instead of the 16 for minimax and 11 for a sub-optimally ordered aipha-beta
search. It has been shown that in general for fixed depth D and fixed branching factor B
the number of bottom positions (NBP) in a perfectly ordered search s

D+l D=t
NBP,, -8B * +B * for D odd.
b
NBP, = 2B* -1 for D even.

Although the growth rate s still exponential for the tree searching using alpha-beta
and perfect ordering, the exponent has been halved. Of course, f we knew how to order
the nodes at each level perfectly there would be no need for a search; this 18 a lower
bound on the number of bottom positions that must be evaluated.

4.3. A model of tree-searching with alpha-beta

There is such a disparity between the tree searches with best and worst possible ord-
ering that little help is given to the game programmer looking for search pianning factors.
For example, a tree with fixed depth 4 ply and fixed branching factor 38 could have as
many as 2,085,136 bottom positions if ordered 1in the worst passible way, or as few as
1443 bottom positions if ordered perfectly. 1t is clear, though, that one can always do
better (on the average!') than worst possible ordering: simply randomuze the order of the
moves at each level. This approach yields a more practical expected worst case than the
minimax algorithm for planning purposes. The actual performance of a game-playing pro-
gram could then be compared to see whether it comes closer to perfect or to random
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ordering.

Three assumptions will be made in the randomly ordered game tree model: (1) the
depth D and the branching factor B are fixed; (2) the values of the B? bottom positions
of the completely enumerated tree are independent, identically distributed random vari-
ables; and (3) that the values of the bottom positions are drawn from a continuous distri-
bution. Note that the actual values of the bottom positions are not important to the
alpha-beta algorithm: only their relative values. No attempt is made to model
modifications to the basic alpha-beta search, such as fixed ordering, dynamic ordering, or
the use of aspiration levels. This model should be viewed as an upper bound in the sense
that any program can perform this well if the moves are no worse than randomly ordered.

This model was carefully analyzed in [Fuller, Gaschnig, and Gillogly 1973]. For
D=2 we found that the expected number of bottom positions (NBP) is

fo=]

Y i
EINBPg;l = B+ L w5 lBB(E.B)— 1] @1

where 8 is defined in terms of the I' function,

l‘(.\')l‘!v)‘

Blxy) = I'(x+y)

Although an exact formula for the expected number of bottom positions was
obtained for arbitrary depth, it was too complex to evaluate for any but the smallest trees.
For depth 2 and depth 3 the expected NBP can be computed exactly, but for depth 4 or
more roundoff error and the complexity of the formula make it impractical to compute.
A Monte Carlo simulation was written for this model in SAIL, assigning random values or
permutations to the bottom positions in a tree, backing up the result using alpha-beta, and
. collecting statistics on the size of the search. Tree sizes and standard deviations are
shown in Fig. 4.4 for NBP< 10000 and depth<9 ply.

4.4. Applicability of the model to chess

Several assumptions were made to simplify the analysis of the model which do not
conform to the properties of game trees in general. First, the model assumes a fixed
branching factor and fixed depth. Many game playing programs (though not all) use
searches of variable depth and breadth. Second, the values of the bottom positions have
been assumed to be independent; in practice there are strong clustering effects. For
example, in a chess program with an evaluation function that depends strongly on
material, a subtree whose parent move is a queen capture will have more bottom positions
in the range corresponding to the loss (or win) of a queen than will subtrees whose parent
move is a non-capture. The final assumption is that the probability that two bottom posi-
tions in the tree will have the same value is zero (continuity assumption). In practice,
game programs select the value of the terminal position from a finite (and sometimes
small) set of values.

In this section we investigate the effects of the continuity and independence assump-
tions. The assumptions of fixed depth and breadth are not unreasonable for a program
like TECH, at least in fairly stable positions.

In order to assess the expected :ffect of the continuity constraint, we relax it in the
model so that the values for the evaluation function are chosen from R equally likely dis-
tinct values. If R=1 we have in effect perfect ordering, since equal values will produce a
cutoff. As R approaches infinity the expected number of bottom positions approaches the
value in the model, since the probability that two values are equal shrinks to zero. The
variation in the number of bottom positions with R is shown in Fig. 4.5. For smal! values
of R (e.g. R<S) the modified model approaches perfect ordering rather rapidly with
increasing branching factor (B). As R increases to reasonable values for a chess program
like TECH, eg. R=20, the number of bottom positions stays close to the number
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predicted by the model with a continuous evaluation function.

To investigate the independence assumption TECH was modified to use a fixed
depth and branching factor. An optional mobility term was added to the evaluation func-
tion to boost the number of distinct values (R in the preceding paragraph) to a value high
enough to approach the continuous case. It should be noted that most chess programs
have more complex evaluation functions than TECH, so that the model would be even
more applicable to them. In this way each of the assumptions except for the indepen-
dence within subtrees can be controlled.

In order to ensure a reasonable mix of opening, middle and endgame positions a
complete game was analyzed, consisting of 80 positions (Spassky-Fischer, Reykjavik 1972,
game 21). Each of these positions was analyzed by the modified TECH programs for D
= 2. 3, and 4 over the effective range of branching factors. Fig. 4.6 shows the simula-
tion results for the model for these values of B and D; plotted with them are the number
of bottom positions using TECH's normal evaluation function (O’s). At a typical point
(<B,D> =<10,3>), the observed range (R) of distinct bottom position values in the
trees varied between 1 and 9, with median 5. This agrees well with Fig. 4.5. To eliminate
the effect due 1o lack of continuity in the evaluation function, the positions were re-run
with the program modified so that a value which would result in a prune by equality was
randomly perturbed up or down. This simulated an evaluation function that assigns
unique values to all of the bottom positions. The perturbations changed the value of the
position by at most 2 points, since there are at most 2 alphas or 2 betas being kept at any
time in a depth 4 tree. Since 2 points is small compared to the value of a pawn (100
points), the tie-breaking procedure does not significantly affect the correlation among
positions in a subtree. The systematic discrepancy between these points (*'s in Fig. 4.6)
and the curve from the model must therefore be due to the assumption of independence.

The experiment was repeated using the optional mobility evaluation function (Fig.
4.7). The range (R) is much higher with this evaluation function. At the point
<B,D> =<10,3> the range varied between 12 and 82, with median 43. Since the
tiebroken points are only slightly higher, the range must be high enough to be close to
continuous. The tiebroken points lie almost on the line from the simulation model, indi-
cating that the independence assumption is more nearly correct for this model. lLe., the
inclusion of mobility in the evaluation function decreased the correlation within sub-. s
enough to make the effect negligible.

Comparison of these graphs indicates two ways in which the evaluation function
affects the number of bottom positions evaluated: (1) as the range of the evaluation func-
tion increases, the number of bottom positions increases; (2) as the correlation among
values in the same subtree increases, the number of bottom positions decreases.

4.5. Evaluation of TECH's tree pruning

It is very important to discover whether TECH's searches are closer to perfect order-
ing or to random ordering, since at reasonable depths (4-5 ply) the randomly-ordered
searches are several orders of magnitude larger than perfectly-ordered ones. If the order-
ing is nearly perfect already, additional time spent trying to achieve a better ordering
would be wasted, since the number of positions considered could not change very much.
If the ordering is closer to random, then we can afford more heuristics to reduce the
search by improving the ordering.

Six positions were chosen from the 1966 Piatigorsky Cup chess tournament [ed.
Kashdan 1968). These positions are shown in Fig. 4.8 and represent the opening, mid-
dle, and endgame. Each position was searched to depth § (plus quiescence) by a TECH
version including the capture sort and killer heuristic, but not including the aspiration
level or iterative deepening, neither of which is treated by the model. The number of
branches and move generations were collected at each level in the tree. The number of
bottom positions is not as well-defined in a TECH search as in the model, however, since
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some positions which might have been bottom positions are pruned by the quiescence
search, while the leaf nodes of the quiescence search itself might be considered bottom
positions. This problem is circumvented by observing that the nodes at each level in the
tree are iid random variables (according to the model) so the number of move genera-
tions at any level in the tree less than the maximum depth may be compared with the
expected number of bottom positions in a complete search to that depth using the model.

The number of move generations and branches at each depth for each position are
shown in Table 4.1. The average branching factor at each level is computed, rounding to
the nearest integer. From the branching factor and the depth are computed the expected
number of move generations assuming perfect ordering, random ordering, and minimax
(i.e. no pruning). This is an approximation, since the model assumes a fixed branching
factor and the effect of drawing branching factors from another distribution was not inves-
tigated. The numbers for random ordering, depth 2, were computed from the exact for-
mula (4.1). For depths 3 and 4 simulations were run to determine the approximate
expected number of move generations.

Slagle and Dixon [1969] define the depth ratio as a measure of the efficiency of an
algorithm relative to the minimax search (worst case):

log NBPy
lOBN BP MM

where NBPy¢ is the expected number of bottom positions examined in a minimax search
and NBP; is the expected number of bottom positions examined by algorithm X. Fuller,
Gaschnig and Gillogly [1973] suggest as an alternative the depth ratio with respect to the
expected number of bottom positions in a randomly ordered search with alpha-beta, since
any program can achieve at least a random ordering. Both depth ratios are computed in
Table 4.1, as is the depth ratio vs perfect ordering.

DRy=

It is immediately apparent that TECH's searches are much closer to perfect ordering
than to random ordering. In three of the positions the search to depth 4 was less than
twice as great as a search with perfect ordering. I[n the worst case, position S, TECH's
search was only five times as great as perfect ordering, and 1/9 as great as random order-
ing. This clearly indicates that although some additional gain in time is possible by
improving the cutoffs within the tree, it will not be possible to gain as much as an order
of magnitude improvement by re-ordering.
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Position 1 Position 4
depth 1 2 k] 4 depth 1 2 k] 4
move gens 26 102 1069 4253 move gens 25 49 698 1310
branches 778 3064 35705 branches 451 1183 12609
br. factor 30 30 33 br. factor 18 24 18
perfect 59 929 un perfect 35 59 647
random 350 5680 86050 random 149 3290 12400
minimax 900 27000 1185921 minimax 324 13824 104976
depth ratio vs ab .19 .807 .135|depth ratio vs ab 118 809 762
depth ratio vs minimax .680 684 .597|depth ratio vs minimax 673 687 621
depth ratio vs best case  1.134 1.014 1.095 {depth ratio vs best case  1.09§ 1.024 1.109
Position 2 Position §
depth 1 2 3 4 depth 1 2 3 4
move gens 32 91 1237 4539 move gens 41 247 3131 11580
branches 1370 2867 49300 branches 1543 8233 105563
br. factor 43 2 40 br. factor 38 3 34
perfect 85 1055 3199 perfect 18 1121 2311
random 643 6600 158000 random 521 7170 95500
minimax 1849 32768 2560000 minimax 1444 35937 1336336
depth ratio vs ab .698 810 .703|depth ratio vs ab 381 907 816
depth ratio vs minimax .600 685 .571|depth ratio vs minimax 187 767 0663
depth ratio vs best case  1.01§ 1.023 1.043|depth ratio vs best case  1.276 1.140 1.208
Position 3 Position 6
depth 1 2 3 4 depth 1 2 3 4
move gens 46 136 2501 7040 move gens 18 1582 505 3428
branches 2085 6453 108577 branches S17 2250 11724
br. factor 45 47 43 br. factor 29 15 2
perfect 89 225§ 3697 perfect 57 239 1057
random 694 17100 202000 random 330 1040 2
mimimax 2025 103323 3418801 minimax 841 3378 279841
depth ratio vs ab RAY 803 .725|depth ratio vs ab 866 896 798
depth ratio vs minimax 645 o7 .589|depth ratio vs minimax 746 766 649
depth ratio vs best case  1.094 1.013 1.078|depth ratio vs best case  1.243 1.137 1.169

Table 4.1: Comparison of TECH's searches with random and perfect alpha-beta
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5. Comparison with expert human performance

If possible the performance of a program that operates in areas of human proficiency
should be compared against human performance. The preceding section demonstrates pro-
cedures for such measurement if an a priori measurement scale exists (in this case, the USCF
rating system). In this section a direct comparison is made between moves made by human
chess players and moves made from the same positions by TECH. This procedure is similar to
the method of protocol analysis, used successfuily in investigations of GPS [Ernst and Newell
1969] and the task of cryptarithmetic [Newell 1967], where protocols were used to establish the
similarity of the detailed problem-solving behavior of the programs and human subjects. This
application differs in that only the macroscopic behavior is being compared -- no detailed simi-
larity in problem-solving methods is expected or tested for.

This comparison is undertaken to establish the limits of possible improvement, to isolate
glaring deficiencies, and to work toward an overall measure of performance for chess programs.
In his work with checkers, Samuel [1967] compared the play of his program against that of
master human players using similar methods. In this section the "Samuel Coefficient” is com-
puted for TECH's moves and compared against Samuel's results. Some deficiencies of this
measure are noted and improvements are presented.

§.1. Master positions used for analysis
Two sets of positions and moves from master chess games were used.

5.1.1. Spassky/Fischer games

The primary set of data consists of the twenty games of the 1972 World Cham-
pionship match between Boris Spassky and Robert J. Fischer. The positions from
these games are eminently suitable for analysis because (1) a World Championship
game should (in general) exemplify the highest caliber of play available; (2) several
books analyzing the games are available, and (3) the choice of complete games
ensures a proper mix of tactical and strategic moves, as well as the correct distribu-
tion of moves from the different phases of the game.

It has been suggested by Simon [1976b] that the results of the experiments
might be different if Master games were chosen instead of World Championship
games, since world champions "not infrequently make moves that seem most
surprising even to strong players until they have done a lot of analysis." I feel,
though, that if the play is better in a World Championship match, the measure is
more convincing, since it is being compared to the best play available. TECH couid
be compared against the play of a Class C player and might look considerably better,
but the measure would not be a good one for a Class A program.

All moves in these games were used except the forced moves (i.e. the only
legal move in the position) and those for which TECH had a "book” move. The
mean mobility (numiber of legal moves) in these 1751 positions was 30.74. The dis-
tribution of these positions by phase of the game (measured by material of the
player who is ahead) is shown in Fig. 5.1.

§.1.2. New York positions

A set of positions from the 1924 International Tournament held in New York
was analyzed in less detail as corroborative evidence. This set was used because it
had been previously used as a test for chess programs [Marsland 1973]. The posi-
tions consist of sequences of moves from the middle game ranging in length from
14 to 56 moves. The mean mobility in these positions is 37.45, and the distribution
with phase is shown in Fig. 5.1. Less analysis was done on these positions because |
feel they are not representative enough of the complete range of chess positions.
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Marsland suggested two methods for comparing the performance of chess pro-
grams. The first suggestion was to implement both programs on the same computer,
then apportion the time accordingly. This is to avoid confounding computer speed
with the program’s inherent efficiency. The second suggestion was to test both pro-
grams on a sample set of positions from master chess games, and to discover where
the program rates the masters’ moves. The programs could then be compared by

i the distribution of their master-move ratings. This method could be used to com-
pare programs which cannot play each other for logisticai reasons. The main
difficulty with this method is that insufficient emphasis is placed on a losing move: in
an actual game a losing move (as opposed to a sub-optimal move) will lose the
game, no matter how well the program performs on the rest of the positions. With
this measure a losing move simply drops the distribution slightly, and a brilliant but
uneven program could outperform a more conventional but more uniformly
developed one.

i i AR

5.2. Design of the master comparison experiments

This set of experiments was designed to vield at least the information necessary to
compare TECH's results with those of Samuel [1967] and Marsland [1973]. Some addi-
tional information was gathered to assess the sensitivity of the resulting measures to the
depth of tactical search.

5.2.1. Depth determination

For each of the 1751 Spassky/Fischer positions and the 861 New York posi-
tions TECH was allowed up to 150 seconds to choose a move. This time allotment
| corresponds to a typical chess tournament time allowance. The maximum depth of
search reached in this time for each position was used in the subsequent anaiysis of
that position. The upper curve in Figure 5.2 shows the mean search depth (in ply)
attained by TECH on the Spassky/Fischer games under these conditions plotted
against the move number of the position. The mean depth dropped from about 4.3
ply in the opening to 4 ply in the middle game (moves 15-25), then rose to more
than 6 ply in the endgame. In order to determine sensitivity to the depth of search,
the first 10 Spassky/Fischer games were analyzed with a maximum ailowed ume of
20 seconds. A comparison of the lower curve with the upper in Fig 5.2 shows that
the depth of search for the 20 sec case is slightly more than one ply shallower than
the 150 sec runs. This is consistent with the observation of §2 that search time s
increased by about a factor of 25 for two additional plies of search depth. One ply
would require an average of a factor of 5 (assuming odd and even depths balance),
so that a search one ply shallower than the 150 sec search could be expected to take
30 sec. Since the 20 sec search is slightly more than one ply shallower, the numbers
are in the right ballpark.

5.2.2. Ranking the master’s move

In order to obtain statistics comparable to those of Samuel and Marsland, it is
necessary to determine the ranking given by the program to the move actually made
by the master. A normal search using alpha-beta pruning would yield only the vaiue

‘ of the move considered best by the program, and no information on the relative
rankings of inferior moves. Hence the search algorithm must be modified to pro-
vide the desired information. This is the reason for the preliminary search depth
determination described above: determination of the rank of a particular move
requires more time than simply choosing the move considered best, so that ter-
minating the search based on the CPU time elapsed would not bear any relation to
tournament conditions.

The least expensive method of obtaining the master’'s ranking in the
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framework of TECH is to do a preliminary search to determine the value M of the
master's move, then a subsequent search on each remaining move using M —e¢ (for
¢ smaller than the minimum granularity of the tactical evaluation function) as the
aspiration level for moves rated positionally better than the master's move, and
using M as the aspiration level for positionally inferior moves. Then the moves
which are not pruned by alpha-beta will be those moves which would have been
rated higher than the master’'s move. To simplify the implementation, alpha-beta
was turned off at the top level and the returned value saved for each move, resulting
in rather more computation.

The only other variable needed to compute Samuel’s coefficient is the number
of legal moves in the position. This was also collected, as well as the total time
required for analysis of each position. The total number of moves rated tactically
equal to the move chosen by TECH was also collected. This variable is used to
determine positions where TECH feels the master's move either loses material or

. fails to win material. It is also used in a lower bound model of the performance of
the positional evaluation module.

5.3. Results of the master comparison experiment

The cumulative distribution of the ranks of the masters’ moves is shown in Fig. §.3.
TECH chose the same move as the master about 1/3 of the time; the master’'s move was
in the top 6 of TECH's choices about 75% of the time. There was a slight difference
between TECH's overall performance on the Spassky/Fischer data set and on the NY
1924 data set due to the different distribution of positions with respect to phase of the
game. The distribution for the shallower run (20 sec/move) is slightly below the other
runs.

5§.3.1. Samuel’s coeflicient

The measure used by Samuel [1967] to evaluate relative performance of his
checkers programs is an attempt to capture in one number the data in the distribu-
tion of masters’ moves. The coefficient is defined by

Cw L-H
L+H
where L is the total number of moves rated worse than the masters’ moves, and H
is the number rated better. Clearly C is in the range {-1.1], and higher values of C
correspond to higher rankings of the masters' moves.

5.3.1.1. An interpretation of Samuel's coefficient

Although Samuel’s coefficient may be used merely as a relative ranking
between programs (as Samuel used it), more insight can be obtained by con-
sidering a simple model of the decision process in games like checkers and
chess.

We assume that at every point in a game there is a constant number M
of legal moves available, and that a player will choose one of a subset of

N € M of these moves with equal probability —lﬁ A better player will choose

among a smaller subset of moves than a worse player, since he can immedi-
ately eliminate more subtly bad moves. In practice, of course, the worse
player will sometimes eliminate the best move on specious grounds. This
effect is ignored in the model.

The Samuel coefficient may now be computed for this model. Let R, be
the rank assigned to the best move in the ~~th position of the set of n prob-
lems. Then

B S Y TR
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L,=- M-R, and

H = R—1

Samuel's coefficient is then
iLl o i”;

Cw 1= )

L+ 34,

™ -

¥ (L~ H)

1|

Y (L+ H,

nM+tr—2iR,

nM-—n

Since the R, are uniformly distributed between 1 and N, we have

BYRRY Y.

i
¢ nM—n

N-1

|- ——

M-1

We now have an interpretation of the Samuel coeflicient. If the legal
mobility is a constant M and a player's coefficient is C, then his play is
equivalent to that of a player who chooses randomly among N moves, where

N=(1=-C)(M-1+1 (5.1

That is to say, his decision process is equivalent to narrowing the field of
moves from M to N choices.

§.3.1.2. An example using checkers

Samuel [1967]) used the coefficient C to demonstrate the difference in
superficial abilities of his two basic program designs; that is, each program
rated the moves in each of his test positions without doing any look-ahead, and
from these orderings the coefficients were computed. The signature table case
achieved a coefficient of 0.48, while the polynomial program attained only 0.26.
Using Samuel's assumption of M=6 (he asserts that it would be 8 without
forced captures), the signature table method yields a gain comparable to reduc-
ing the search to a choice among 3.60 moves, a 40% reduction, while the poly-
nomial search is comparable to a choice among 4.65 moves, a 22% reduction.
For the signature table case this means that without a lookahead the program
would place the master's move first or second somewhat over half the time,
which agrees with Samuetl's figure of .64.

Somewhat more informative (and much more expensive) would have
been a comparison of the coeflicients of the programs afier the look-ahead
search. The ordering given by a primarily positional evaluation function may
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be totally obliterated by the depth search in a primarily tactical position. In the
case of Samuel's polynomial-learning and signature table programs, apparently
the excellence of the search procedure dominated the effect of the quite
different superficial evaluation functions (neither of which achieved spectacular
effective reductions), resulting in programs of about the same over-the-board
playing ability.

5.3.1.3. Samuel coefficients for TECH

To facilitate comparison with Samuel’s results, the Fischer/Spassky
games were re-run without lookahead, so that only the positional pre-sort was
operative. This resulted in C=0.265 overall, which according to the interpreta-
tion in 5.3.1.1 corresponds to an elimination of (on the average) 8 of the 31
legal moves, or a 26% reduction of the move set. This reduction is of the
same magnitude as that of Samuel’s polynomial-learning program, and less
than that of his signature table program.

For the more interesting case of analysis with lobkahead, TECH’s Samuel
coefficient was 0.737 for the 150 sec search over all twenty games of the
Spassky/Fischer set, corresponding to a 71% reduction in the search, using the
average mobility M=30.74 for this set. With the maximum search time of 20
sec C dropped slightly to 0.715 on the first 10 games, or a 69% search reduc-
tion (for M=31.10). On these games the 150 sec search resulted in C=0.738,
essentially the same as for the complete set. The overall coefficient on the NY
1924 positions (150 sec) was C=0.769 (a 75% search reduction, based on
M=137.45 for this set), very similar to the coefficient for the Spassky/Fischer
positions.

The difference between TECH's performance with 150 sec search times
on the Spassky/Fischer set and the New York 1924 data set is due to the
difference in character of the positions. Figure 5.1 shows the distribution of
the two sets with respect to the phase of the game; the first bar shows the
number of positions in the opening phase (defined for TECH's purposes as the
first 8 moves for each side) and succeeding bars show the number of positions
having the amount of material shown, in increments of one rook (500 points).
The NY 1924 set is primarily composed of middle game positions, with none
from the opening and few from the endgame. The Samuel coefficient C was
computed for each phase, and the result, shown in Fig. 5.4, indicates that C is
about the same in each phase for the two sets.

Fig. 5.4 indicates that TECH is relatively somewhat better in the middle
game than in the opening, and is much worse in the endgame.

5.3.1.4. Calibrating the Samuel coefficients

If a number of human masters were to rank the moves made by Spassky
and Fischer, what would be their aggregate Samuel coefficient? Certainly it
would be less than 1, since in many positions no objective choice may be made
among several moves. The average number of objectively indistinguishable
moves in middle game positions i$ unlikely to be more than 5, and is probably
closer to 2. De Groot [1965] analyzed one of his tournament games and found
that the average number of good moves per position was no more than two;
the maximum in that game was 5. In Fig. 5.5 is plotted the Samuel coefficient
against mobility for several values of the number of objectively indistinguish-
able moves (from eq. 5.1, §5.3.1.1). It is seen that for mobilities in the range
of the middle game (mobility greater than 30) the Samuel coefficient is higher
than 0.85 for all reasonable estimates of discrimunation equivalent to that of a
master.

v
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The data in an extensive collection of master games accumulated by
Arthur M. Stevens [1969] can be utilized to give a little more insight in the
opening. The book is a tabulation of the openings of nearly 7000 games, giv-
ing the number of times each move was chosen and the winning percentage.
The former statistic is sufficient to determine the Samuel coefficient of the
players of those games with respect to the Spassky/Fischer games, if one
regards the relative frequency as representative of the aggregate ranking by
masters of those moves. This assumption ignores the group learning factor in
opening theory: lines recently discovered to be bad would have a higher fre-
quency in past games than in modern ones.

The rank of the master’s move is deduced by checking the frequency of
that and other moves made from the position. This rank is used with the
mobility of the position to compute the Samuel coefficient directly. The
overall coefficient derived in this way from Stevens' data was 0.970 for the
positions considered both by TECH (eliminating forced moves and positions |
TECH's book) and by the masters in the Blue Book. TECH's coefficient on
the same positions with 150 sec/move was 0.732, as opposed to 0.740 over all
openings. Using a mobility figure of 25 for these positions, the masters’ rank
corresponds to a value of N=1.5 based on figure 5.5. That is, the masters nor-
mally considered only one or two moves in a position. This agrees with De
Groot's findings.

5.3.1.5. Relevance of Samuel Coeflicient

Some discussion of the appropriateness of this measure s in order, con-
sidering the major differences between checkers and chess. For one thing,
chess has a considerably larger branching factor than checkers, and a relatively
smaller number of good moves in each position. Further, the bafance between
positional or strategic goals and material goals is considerably different in the
two games.

The discussion in §5.3.1.1 indicates that the coefficient can be interpreted
in a meaningful way as a search reduction. The differences in branching factor
and number of good moves will change the range and variability of the meas-
ure from that of checkers, but the interpretation remains the same.

More difficuit is the question of whether the coeflicient provides an
overall measure of goodness of play, or whether it 1s biased toward positional
or tactical moves. If, for example, nearly all (e.g. 30%) of chess positions were
primarily tactical, variations in positional or strategic ability would be
effectively washed out in comparison. It is therefore of interest to determine
whether the positions in the Spassky/Fischer games are well balanced between
tactical and positional situations.

A plausible approach to this problem is shown in Fig. 5.6. The moves in
any position can be divided into classes based on TECH's estimate of the
material value of each move. In the first group (call it MB, for matenally
best) are all moves which win the maximum amount of material, lose the least
possible, or retain the status quo. The size of the MB group is an estimate of
how tactical the position is. For example, if material is to be won or protected
on this move, there are at most a few moves which will do it. If, on the other
hand, the position is rather stable, there will be a number of moves which all
result in retaining the status quo, matenally. The sizes of the MBs for the
Spassky/Fischer games were computed and the distribution plotted in Fig. 5.6

In nearly 20% of the positions there is only one move in the MB group,
indicating that the position is totally tactical. The MB groups consisting of
three or less moves comprised about 1/3 of the total.  After this imtial group
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of very tactical moves the MB sizes are rather uniformly divided, and about
half of the positions have an MB size larger than 8. No attempt will be made
to establish a firm cutoff between tactical and non-tactical positions, since they
are fuzzy concepts (in Zadeh's sense), but it seems reasonable that positions
with an MB larger than about 8 or 10 could be considered non-tactical. In any
case, it seems evident that the positions are rather well distributed between
tactical and non-tactical.

§.3.2. Indirect comparison with other chess programs

Marsland suggests [1973) that programs may be compared indirectly by consid
ering their relative performance on common games if more direct competition is
impractical. The same method can be used to check improvement in a single pro-
gram. There are clearly strong disadvantages to this kind of indirect test, since the
chess-playing programs are being used in a manner other than in playing chess. For
example, one program may score higher than another on a master game comparison
test because of excellent positional heuristics, but still be tactically inferior in ways
that would ensure the loss of a game. These deficiencies might show up in only two
or three positions in a game, but any one serious tactical blunder would be enough
to lose. However, such an indirect comparison would provide interesting data
points, particularly if the programs involved both were guaranteed to meet some
minimum level of tactical competence (say the equivalent of a depth 3 TECH
search). The problem is one of ensuring that the program is penalized sufficiently
for its major inaccuracies. It should be noted that the indirect comparison of pro-
grams by comparing their USCF ratings does not suffer from this flaw, since the rat-
ings were obtained by playing complete games and reflect the consequences of
important blunders.

The comparison measure used by Marsland is the distribution of the ranks of
the masters’ moves according to the program’s ordering. The game fragments
described in §5.1.2 above were analyzed by TECH for comparison with Marsland’s
statistics (1973 and 1974]. TECH used a normal tournament time allowance, as dis-
cussed in §5.2 above. These were compared with results obtained by Marsland
[1974] using his program WITA at depth 1 with learned weights. The results,
shown in Fig. 5.7, indicate that TECH predicts the masters’ moves better than
WITA, Marsland’s program. TECH's primary advantage is apparently in assigning
more of the masters’ moves to the first rank; the higher ranks are about the same
for each program. This may indicate that TECH is correctly assessing more of the
strictly tactical moves, as one would expect from a deeper search.

5.3.3. Tactical difficulties

In a number of positions in the Spassky/Fischer games TECH regarded the
move made as tactically inferior to the one it selected. This represents another
upper limit of a TECH-type program's ability to reproduce master play: any move
that loses material (or appears to lose material) is eliminated from consideration,
and no positional heuristics will be able to override this decision. It is therefore of
interest to consider these positions carefully, determining the major categories of
error.

Of the 1751 moves used in this study TECH indicated that 203 of them (12%)
either lost or failed to win material. Analysis of these positions (using published
commentaries on the games whenever possible from [Evans and Smith 1973) [Gli-
goric 1972) [Reshevsky 1972] [Byrne 1972] and [Alexander 1972)) resulted in the
categorizations in Table S.1.

In some cases this categorization is a matter of judgment, since (for example)
a move sacrificing a pawn to open up the enemy’s King-side could be considered a
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____Category number
Insufficient depth 55
Strategic sacrifice 33
Positional sacrifice 27
K safety, mate threats 22
Horizon effect 18
Bad piece values 17
Oversight by F or S 5
Book draw S
Attack quiescence 5
Perpetual check 2
Also correct 2
Zwischenzug 2
Errors 10

Table 5.1: TECH’s tactical problems in the Spassky/Fischer games

strategic sacrifice, a king safety situation, or, if mate is imminent, a case of
insufficient depth. Many of the moves are from the same situation. In game 13, for
seven moves Black’s rook could have been taken by White's (good) bishop, so that
most of the positions categorized as "bad piece values" were from this situation.

The most numerous category was that of "insufficient depth.” By this is meant
that TECH would have been able to solve the problem with a somewhat deeper
search; additional knowledge such as a MATER-like (Baylor and Simon 1966]
routine might be more to the point, but a deeper TECH-type search would be ade-
quate.

The next largest category, strategic problems, are moves that a TECH-type
program would not be able to make because they involve a trade of material (or
offer of a trade) for less tangible goals, such as a strong attack or the eventual win of
more material (for which an algorithm might be obvious but which would involve a
much deeper search than implied by "insufficient depth"). One interesting situation
that has been placed in this category is the position shown in Fig. 5.8. TECH sug-
gests the interesting move R-B8 (not mentioned by any of the annotators), which
wins the King's pawn. However, Berliner points out that after 1. ... R-B8, 2.
R(3)-KB3, QXQ, 3. RXQ, RXRCH, 4. RXR, NXP White will win by seizing the
QB file and winning a Queen-side pawn, "after which it is all over.” [Berliner 1975]
Similar moves which are tactically successful but strategically faulty have been placed
in this category.

Positional sacrifices are moves that sacrifice material for an advantage that is
*well known" (in chess literature) to be meaningful but which does not lead to a
material return. The most common positional sacrifice is the gambit pawn traded for
rapid development. This principle is beyond the scope of a TECH-type program,
except where specific opening lines are used to avoid well known dangerous gambits.

Some of the problems included in "king safety” are tractable in 2 TECH-type
environment. TECH's quiescence algorithm terminates a search when a king moves
away after being in check, eliminating sequences that may be as restricted as chains
of captures. An extension of TECH would be to continue the search through
sequences of checks and escapes from checks. Indefinite sequences of checks can be
avoided with appropriate hashing methods using the hash table already in TECH. A
serious weakness (which showed up in only two cases here) is TECH's inability to
deal with perpetual check situations. This extension would be able to catch many of
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Figure 5.8: Black to move
Game 17, move 25 of the Spassky/Fischer match

these cases and assign the appropriate value (zero) to the terminal positions. The
other major king safety probiems, material sacrifices designed to open up the
enemy’s king position for a speculative future attack, are beyond the scope of TECH
because of the necessity of balancing material gains against non-material ones.

A related quiescence problem encountered occasionally (shown in Table 5.1 as
*attack quiescence’) involves moving a piece away from attack, then declaring the
position quiescent because the last move was not a capture. The same problem
occurs with forks, when one piece is moved away, making the position quiescent by
the definition used in TECH, but leaving the other piece en prise. Clearly this situa-
tion could be handled by methods similar to the check extension discussed above,
but it might not be cost-effective. This is an area for further investigation.

The horizon effect was responsible for a number of blunders, among which
were sacrificing a bishop to delay the inevitable capture of a queen, forcing an
exchange to delay the consequences of "winning® a pawn, and making anti-positional
attacking moves to delay the capture of a pawn. Two positions exhibited the "posi-
tive horizon effect” (shown in Table 5.1 as “"zwischenzug'), where TECH made a
move to gain material in the short term, not realizing that the move made by the
master did not destroy the opportunity, but would gain the material on more favor-
able terms. As Berliner points out [1973] the horizon effect is a serious shortcoming
of the TECH-type program. Attempts have been made by the Northwestern group
and others to minimize the horizon effect, but without total success. It is probable
that this will be a problem for some time to come.

In several situations TECH's piece value structure was at fault. No distinction
is made between a "good bishop® and a "bad bishop,” or between pawns on the
second or seventh ranks. This problem may be alleviated to a considerable extent
by assigning individual values to each piece and pawn at the top level of the search,
using heuristics to determine the relative values of (say) a rook that controls an
open file, a bishop controlling important diagonals, and a passed pawn. This is still
an approximation, of course, since the search would change the parameters on which
the values were based (e.g. by driving the rook away from its file), but it would be
satisfactory for a large number of cases.

In five of the positions the lack of "book endings™ was apparent. When playing
for a draw protecting material is not necessary if the resulting position is known to
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be a draw (i.e. the algorithm for drawing is known). As Huberman has shown
(1968] it is feasible to encode knowledge of endgame algorithms in programs. But
while in TECH it would be quite reasonable to recognize such positions at the top
level, it might be too expensive to check deep in the tree to see if each position was
a representative of one of the known endgames; in this the idea of working toward a
known draw (or won game) would be unattainable. Some experimentation should
be done to discover whether such a check could be made feasible.

Not all of the positions involved errors by TECH. In five of the 203 positions
TECH's move correctly took advantage of a biunder by Spassky or Fischer; two of
TECH's moves were equally good (although it didn’t understand the masters’ moves
for one reason or another); and errors were made in setting up ten of the positions.

These positions represent some of the limitations of TECH's present tactical
ability; these problems should be considered when developing a program intended to
play respectable chess. I believe, though, that only the straightforward solutions
should be incorporated in the "standard TECH" in order to retain the simplicity of
structure necessary to make TECH implementable in a reasonable amount of time.
The purpose of this section is to understand the tactical inadequacies that this res-
triction entails.

5.4. Overview of the master comparison experiments

Comparison of a program's play against that of good human players can yield
insights in several dimensions. First, it can help to establish the program’s overall level
of skill if no more direct measure is possible. Second, a detailed examination of positions
where the program fails to understand the tactical issues (§5.3.3) can help to isolate
severe tactical and non-tactical problem areas. This process is largely automatic since
*failing to understand the issues” can be defined as claiming that the master's move loses
or fails to gain material. Third, Samuel [1967] has demonstrated that comparison with
master games provides good feedback for learning weights for an evaluation function.
Marsland [1974] has done preliminary experiments applying similar techniques to chess.
Finally, it can provide an indirect means of comparing different programs or ditferent ver-
sions of the same program.

The main defect of this evaluation method is that it places too little emphasis on the
program’s errors. In a real chess game one or a few blunders will be sutficient to lose the
game [see Simon 1976b]. In this kind of comparison the blunder is noted and the pro-
cessing continues as if that move had not been made. In this way a program with a few
serious defects could appear to be considerably better than it is. By choosing positions
from more specific areas (e.g. tactical, positional, strategic, endgame, opening) these
methods can be used to provide a general picture of development in each area. However,
the problem of washing out infrequent but serious errors remains. What is needed are
analytical methods to help pinpoint more precisely the contributions and problem areas.
The next section investigates in more detail the tactical mechanisms used in TECH using
the method of analysis of vanance.
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6. Analysis of the tactical mechanisms in TECH

In previous sections methods were presented for evaluating the overall performance level
of a chess playing program. Just as important as determining the performance level is under-
standing how that performance was achieved. Discovering the overall USCF rating, or even the
relative performance of the program in different phases of the game, is important but tells little
about the reasons for that behavior. Some form of credit assignment is needed: now that we
know how the program behaves, how do we determine which heuristics deserve credit (or
blame) for the components of that behavior?

As before, the analysis is most conveniently divided into considerations of tke tactical and
non-tactical behavior of TECH. In this section the contributions of the individual mechanisms
in the tactical tree search will be considered. Since the concept of TECH is a "brute force® pro-
gram that makes as much use as possible of the power of its host machine, it is most important
to understand which features tend to limit the needed search, and by how much. These results
can give guidance in the design of better search mechanisms and will help put the available
time vs performance level tradeoff in better perspective.

All the non-tactical behavior (mostly positional, but some of the end-game heuristics may
be considered primarily strategic) is controlled by the static evaluation of moves at the top level
of the tree prior to the search. Analysis of the utility and interactions of these mechanisms will
not be done here, but it is recognized that their contribution to the overall performance is quite
significant. Some approaches to determining the efficacy and interactions of these heuristics
will be discussed in the conclusions (§7).

6.1. Identification of tactical mechanisms
A number of mechanisms that affect the total search time can be identified. These

8

capture sort

aspiration level

killer heuristic

"mater” switch

use of the opponent’s time

opening book

iterative deepening

detection of draw by repetition

dealing with the "deferral problem"

-complete search to depth D

quiescence search
- positional pre-sort

The reordering done by the positional pre-sort might have some consistent effect on
the extent of the search, e.g. by directing consideration first to more interesting parts of
the board. Complete search to a fixed depth and quiescence search over all captures are

central to the performance of TECH, and will be considered part of the basic program
here. Effects of increasing depth were considered in §3.

6.1.1. Possible interactions

The assignment of credit for search reduction to these mechanisms is compli-
cated by the fact that there may be interactions among them. Thus the effect of a
given mechanism cannot be determined by simply turning it on and off: it has to be
considered in the context of the whole program. For exampie, the capture sort and
the killer heuristic will frequently be sorting the same moves to the beginning of the
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list. In particular, it is not unlikely (a priori) that there will be interactions among
the capture sort, aspiration level, killer heuristic, mater heuristic, iterative deepen-
ing, and positional pre-sort. Credit assignment to these heuristics will be discussed
in §6.2.

6.1.2. Independent mechanisms

It is considerably easier to assign credit to the other mechanisms individua'
These analyses appear in §6.3. A strong case can be made for the independence
each of these heuristics. The use of the opponent’s time does not change the order
or number of nodes examined, so it cannot interact with the others. The opening
book and detection of draws by repetition completely eliminate the search when they
apply, making their analysis simple. Finally, the "deferral problem” arises infre-
quently enough to make its effects on the other mechanisms negligible.

In an experiment to test for the effects of the mechanisms, all combinations of
switches must be tested. The six remaining heuristics define 64 different program
variations to test. By eliminating these four independent mechanisms from the
analysis we avoid the necessity of running experiments on all 2'%=1024 program
variations.

6.2. Credit assignment to possibly interacting heuristics

We would like to discover what part (if any) of the search reduction is attributable
to capture sort (C), aspiration levei (A), killer heuristic (K), mater switch (M), iterative
deepening (1), and positional evaluation (P).

It is recognized at the same time that some of these heuristics (particularly I and P)
were not intended to reduce the search and have other important functions in TECH’s
structure. We therefore need an experiment that tests the hypothesis H; (for
i=C,A ,K,M,I,P), that heuristic i has a significant effect on the search effort. In addition,
we want to identify the interactions among these heuristics and determine the size of the
effects. This analysis should indicate, for example, whether the aspiration level has
enough benefit to make it worth retaining in the basic TECH program, whether the killer
heuristic is superseded by the capture sort, and how much iterative deepening costs in
search time.

6.2.1. Design of an experiment for interacting heuristics

The method of analysis of variance (ANOVA) allows us to examine the
behavior of a compiex system considered as a black box with switches: the switch
positions are changed, an input is applied, the output is measured, and the resulting
data are analyzed statistically to determine the effects of the switches. ANOVA is
used widely in agriculture (e.g. to determine the effects of several kinds of fertilizers
and insecticides on crop production) and the behavioral sciences (e.g. to determine
the effects of room noise on learning) [Winer 1962] [Kirk 1968] [Cochran 1950]. It
is not a familiar method to most workers in Artificial Intelligence. Specifically
ANOVA gives a way to partition the variance of the observed data into the variance
due to the effects of the switches, the variance due to the interactions between the
switches, the variance due to the population being tested (the input to the black
box), and the variance due to observational errors.

An experiment was run using TECH as the "black box™ and the heuristics with
possible interactions as the "switches," or independent variables. Each program vari-
ation was applied to a number of tactical chess problems (the "input®) and the total
CPU time for solution ("output") was collected.

NN
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6.2.1.1. Independent variables

The independent variables ("switches") in this experiment are the heuris-
tics C, A, K, I, M, and P. Each can take on precisely two levels: on and off.
In some case more levels could be considered, e.g. by keeping more than one
killer move for the Kkiller heuristic, or by including an intermediate positional
evaluation such as maximization of mobility. These additional levels were not ‘
used, since each would add many more states to the experiment and would 1
give only a little more insight into the program'’s behavior.

6.2.1.2. Problem set

The experimental "inputs” were problems selected from Win ar Chess
[Reinfeld 1958], a set of tactical prcblems of varying difficulty. The problems
chosen are all those of the first fifty that the versions of TECH in this experi-
ment could solve within 320 seconds of CPU time. These are appropriate for a
comparison of search efforts, since no amount of search will help TECH to
find a solution to a non-tactical problem; thus we are concerned with minimiz-
ing the search effort in situations where TECH can find the solution by search-
ing. Of these fifty problems, thirty-four were solved within the time limit by
the programs tested.

6.2.1.3. Choice of dependent variable

The dependent variable (the output of the black box) must be a measure
of the total search effort. Traditionally the number of bottom positions [Slagle
and Dixon 1969] (Fuller, Gaschnig, and Gillogly 1973] or the number of
nodes expanded [Gillogly 1972] has been the measure of search effort used.
Although most time in TECH is in fact spent in move generation (node expan-
sion), this measure would not be sensitive to the overhead of the heuristics,
particularly the killer heuristic. For this reason the total CPU time for the
search is used as the dependent variable, so that the benefit of a heuristic is
subtracted from the cost of applying it.

Two of the independent variables have more important effects than
changing the search time. Iterative deepening (1) is included in the program to
avoid losing games by overstepping the time limit, and positional knowledge
(P) controls the choice of moves when several moves are equally good with
respect to material gain or loss. This choice of dependent variable does not
address these dimensions of the benefit of I and P. The remaining variables
have only the effect of changing the search time.

6.2.1.4. Nuisance variables

The choice of CPU time for the dependent variable introduces one nui-
sance variable into the experiment. The CPU time is slightly affected by the
rest of the load on the PDP-10 system, due to interrupts and swapping. An
effort was made to minimize the impact of this variable by making all runs
under the same conditions, i.e. low priority overnight runs.

One common nuisance variable arising in psychological or sociological
experiments, that of difference between subjects (“inputs®) in each group, is
not a difficulty here, since the different versions of TECH will not learn from
the results of other versions on the same problem.
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6.2.1.5. Choice of design

Many experimental designs are used for different kinds of experiments
(see for example [Cochran 1950] and [Kirk 1968]). A “factorial" design is
used when there is more than one "switch” (heuristic) to be evaluated. In a
psychological experiment the "inputs” are human subjects, and to avoid having
a subject’s behavior change because of prior tests a group of subjects is used
for each set of switches. When subjects in a group may be more closely
matched to each other than to the subjects in other groups a "randomized
block® design is used. In this experiment the subjects within blocks are the
same problem for all variations of the program; the difference between prob-
lems is considerable, since they need to be run at different depths, some deal
with mating threats, and so on.

Thus a "randomized block factorial" design is used with six independent
variables, each with two treatment levels (RBF-222222, in Kirk's notation, or
2x2x2x2x2x2 randomized block factorial). Each of the 64 TECH variations
was to be applied to each of-the 34 problems.

6.2.1.6. Modification of the experimental plan

After running several experiments it became clear that all versions of
TECH using the capture sort (C) were so much faster than those without that
the non-C versions became uninteresting. Of the 34 problems solved by the
other program variations, only 18 were solved by the program with none of the
switches turned on within the allotted 150 seconds. The total solution time of
the program with C only was 86 sec for the remaining 16 problems (mean 5.4
sec). For the program with no heuristics the total solution time was 746 sec
(mean 46.6 sec), almost an order of magnitude more. Only two problems that
took the C version longer than 10 sec were solved by the stripped version
within the 150 sec time limit.

For this reason the experiment was restricted to testing the 32 remaining
variations on each of the 34 problems, resulting in a 2x2x2x2x2 randomized
block factorial design.

The design assumes that there is a linear model that describes the effects
on the dependent variable of all the independent variables and interactions.
The model may be expressed as

Xoikmpn ™ (individual observation)

n+ (grand mean of population)

e,+e+e+e,+e,+  (effects of heuristics)

euteut - +en+  (effects due to first order interactions)

et e+ (2nd order interactions)

Coikm+ " Flumpt+ (3rd order interactions)

Caikmp + (4th order interaction)

.+ (constant associated with problem n)

€ITOT yikmpn (experimental error associated with this observation)

That is, the time for a specific program variation to solve a particular problem
can be expressed as a linear combination of the effects of each heuristic and
the effects of all interactions among heuristics, with constants added for the
mean of all solution times and for the specific problem. The remaining varia-
tion from the model is assumed to be experimental error, and includes any
deviation from the assumed linearity of the model.

ey
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6.2.2. Analysis of variance

The CPU time in seconds for each problem and program variation is shown in
Tables 6.1a and 6.1b. The total CPU time used was about 11.7 hours. The variance
over all the observations (MSyor. in Table 6.2) is 2844.8, corresponding to a stan-
dard deviation of about 53.3 seconds. By computing individual variances the total
variance is partitioned into variance due to the problems (83.2%), variance due to
the heuristics (0.9%), and residual variance (15.9%). The residual is an estimate of
J the experimental error - the main sources of experimental error here are the load on
the machine and the extent to which the underlying processes fail to match the
model. The high problem variance simply says that some problems are much harder
than others - some require 4 or 6 ply of search.

6.2.2.1. The F ratio

In analysis of variance the F ratio is used to test the hypothesis that all
the means for the combinations of switches are the same. It is the ratio of the
mean square of the variation due to the effect under consideration to the mean
square of the variation due to error. If there were no interactions expected
between the heuristics and the problems the F ratio used would be between
the effect being tested and the overall residual. It is evident, though, that
there will be strong interactions between some of the heuristics and the prob-
lems. For example, M provides a dramatic improvement in mating situations,
since the search is one ply shallower than if it were not used. For each heuris-
tic, a class of problems could be described for which that heuristic would show
a marked improvement.

Since such interactions are expected the residual variance is partitioned
into its components, so that error terms are computed for each combination of
heuristics being tested against the problems. The individual error terms are
then used as the denominators of the F tests.

The value resulting from this process is compared against the F distribu-
tion to determine the probability that an F ratio this high could have occurred
by chance if tune relevant hypothesis (e.g. that M has no effect) is true.

6.2.2.2. Significant effects

Of all the heuristics, only A and I significantly affected the search times.
Inspection of the means (Table 6.2) indicates that use of the aspiration level
decreased the search time by 23.4% when no other heuristics were present.
Iterative deepening added 5.0% to the search time with no other heuristics
present. The mater heuristic made a large improvement in the means, but had
such a high variance (since only some of the problems dealt with mating and
attacks on the king) that the improvement was not significant. A accounted
for 12.0% of the variance due to the heuristics, and [ for 25.7%. K, M, and P
were not significant, but accounted for 10.3%, 11.8%, and 16.8% of the vari-
ance respectively.

Of the significant first order interactions, the most significant is the com-
bination of M and P, neither heuristic significant by itself. Inspection of
results on individual problems shows that in 23 of the 34 problems the pro-
gram with M and P scored worse than the one with M alone (indicating that P
moved the correct mate-related move farther from the front), so that on the
problems for which M did well the improvement was smaller. This decreased
i the variance enough to make the interaction significant. Figure 6.1c shows the
interaction graphically. The mean with M and P on is quite close to the mean
with M on and P off. (Fig. 6.1d shows an example of heuristics that do not
interact.) The M-P interaction accounted for 8.0% of the variance due to
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heuristics.

The A-K interaction was also significant at the .01 level. The combina-
tion of A and K is worse than the program with A alone, and about the same
as the program with K alone (Fig. 6.1a). Presumably most of the refutations
found by the killer heuristic were subsumed by the refutations developed
automatically by the aspiration level. The inferiority of the program with both
A and K is probably due to the time overhead in attempting to match the killer
move with the legal move list, rather than to a bad ordering by the killer
heuristic. This interaction was responsible for only 1.1% of the variance.

The only other significant first-order interaction (at the .05 level) was the
I-P interaction. The means are shown in Fig. 6.1b. The lines are nearly paral-
lel, showing that the interaction effect, though significant, is small (it accounts
for 0.9% of the variance).

A number of higher-order interactions were also significant. The largest
second-order interaction was the A-M-P interaction, accounting for 2.7% of the
variance due to heuristics. Although programs with M and either A or P are
slightly worse than the program with just M, the program with M and both A
and P is slightly better. The only other sizable significant effect was the A-I-
K-M interaction, accounting for 2.9% of the variance. These and the other
higher-order interactions are mildly interesting, but the effects are not large
enough to affect decisions about retention or deletion of the heuristics.

6.3. Analysis of independent tactical heuristics

In this section are considered the effects of detecting draws by repetition, TECH's
resolution of the "deferral problem,” use of the opponent’s time, and the use of the open-
ing book. Although these heuristics have some effect on the search time, their main
effect is on the macro behavior of the system. The credit assignment for these heuristics
concentrates on the frequency and importance of the situations they handle.

6.3.1. Draw by repetition

One of the more important special-purpose heuristics is the detection of oppor-
tunities to accept or avoid draws by repetition. In many games (but averaging less
than once per game) it becomes necessary to recognize this situation; if it is ignored
it means drawing a won game, or losing a possible draw. In TECH's 38 USCF-rated
tournament games, six could have been drawn by repetition. The first two of these
were actually drawn in positions favorable to TECH before implementation of the
draw detector; another was drawn through a perpetual check that required a deeper
knowledge than TECH possesses.

Detection of draws is particularly important for play against programs, since
they tend to use hill-climbing evaluation functions that leave them near a local max-
imum. If two programs are playing and neither sees anything active they can easily
begin oscillating. In a playoff game with COKO III for second place in the Third
U. S. Computer Chess Championship TECH avoided a draw by repetition 12 times
before coming across the win. The oscillation is a symptom of a deeper problem,
i.e. lack of strategic awareness on the part of the programs, but it gives the unso-
phisticated program more chances to find a way out of its problems.

When applicable the draw recognizer has a strong effect on the search (i.e. it
directs the search to determining whether the draw should be accepted), but because
of its low frequency it has little interactive effect with the other mechanisms. More
important is the effect of its absence: avoiding or insuring a draw in more than ten
percent of its games is a substantial gain.
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Source df MS MS F ratio % variance due = Reduction Means
(heurs X probs) to heuristics of search
(from C only = 48.471)

1 Problems 33 77981.28 (res) 479.18 162.74

2 Heuristics 31 926.79

JA 1 3441.38 275.12 12.51¢ 12.0% 23.4% 37.18
41 1 7376.74 654.65 11.27¢ 25.7% -5.0% 50.8¢
5K 1 2961.42 1407.86 2.10 10.3% 14.4% 41.47
6 M 1 3391.77 6473.01 .52 11.8% 25.4% 36.15
7P 1 4815.74 4140.85 1.16 16.8% 23.9% 36.88
8 Al 1 67.50 78.41 .86 2% 2.8% 47.12
9 AK 1 323.21 51.01 6.341 1.1% 15.2% 41.12
10 IK 1 25.63 _ 48.25 .53 1% 2.8% 47.12
11 AM 1 39.38 48.70 .81 1% 23.7% 36.97
12 IM 1 108.13 63.07 1.1 4% 13.3% 42.09
13 KM 1 5.17 287.50 .02 .0% 25.1% 36.29
14 AP 1 .16 49.90 .00 .0% 26.0% 35.88
15 IP 1 259.16 52.28 4.96% 9% 10.9% 43.21
16 KP 1 340.88 402.04 .85 1.2% 30.0% 33.91
17 MP 1 2297.39 170.61 13.47¢ 8.0% 23.5% 37.09
18 AIK 1 35.67 38.25 .93 1% 17.2% 40.15
19 AIM 1 17.25 17.34 99 1% 22.4% 37.62
20 AKM 1 .00 20.78 - .00 .0% 31.6% 33.18
21 IKM 1 103.15 21.67 4.76t 4% 18.8% 39.38
22 AIP 1 56.99 37.38 1.52 2% 19.2% 39.18
23 AKP 1 1.00 17.16 .06 .0% 34.3% 31.82
24 IKP 1 11.32 33.32 34 .0% 19.9% 38.82
25 AMP 1 776.25 47.44 16.36¢ I % 31.0% 33.44
26 IMP 1 119.78 61.26 1.96 4% 1.2% 47.91
27 KMP 1 343.13 87.05 3.94t 1.2% 33.9% 32.03
28 AIKM 1 824.27 57.73 14.28¢ 2.9% 16.9% 40.29
29 AIKP 1 255.27 46.38 5.50t 9% 24.0% 36.85
30 AIMP 1 .16 33.84 .00 .0% 21.3% 38.15
31 AKMP 1 169.16 40.67 4.16% .6% 41.7% 28.27
32 IKMP 1 173.92 39.09 4.45t .6% 20.5% 38.53
33 AIKMP 1 389.52 51.83 7.51% 1.4% 25.4% 36.15

34 Residual 1023 479.18

35 Total 1087 2844.81
t Significant at .05 level
$ Significant at .01 level

Table 6.2: ANOVA Summary Table
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6.3.2. Deferral problem

In a program with a simple evaluation function like TECH's, occasionally there
will be a situation where the program can capture material, but the opponent has no
immediate defense to relieve the threat. The program is then just as likely to make
a move which does not capitalize on the opportunity, seeing (it thinks) that the cap-
ture can be made later. This is characterized here as the "deferral problem." If such
a position occurs in the end-game, for example, TECH’s king could circle around
the opponent’s pawn until the opponent threatened to defend or promote it,
indefinitely delaying the game. This is a very infrequent situation, but annoying or
fatal (if the opponent has a subtle defense) when it occurs.

The approach taken to circumvent this in TECH is to prefer lines where the
capture occurs earlier in the tree if it gains material over the starting position. It is
recognized that there are even less frequent circumstances in which it is wrong to
capture immediately, where the tension should be maintained and the threat is more
devastating than the execution. These situations are ignored in TECH.

6.3.3. Use of the opponent’s time

The think-ahead feature was used in 30 of TECH’s 38 USCF-rated games.
TECH guessed the opponent’s move correctly in 455 of the 1356 opportunities in
these games (33.6%). Post-mortem timing figures were available for 20 of these
games. In these games TECH guessed 34.1% of the moves accurately. The time the
opponents actually used for these moves was totalled, excluding positions where
TECH could not have used the time (e.g. book moves). This sum was compared
with the total time TECH took in the games, resulting in the very substantial gain of
20.7% in time actually used for computing moves. This is less than the 34% of
correct guesses for two main reasons: (1) in most games the opponent used less
time than TECH, so the savings are proportionately less; and (2) many of the moves
that TECH guesses correctly are "obvious® moves, and are made more quickly by the
opponent.

There is room for a little additional exploration with this heuristic. For exam-
ple, more than one guess about the opponent’s move could be made, and the avail-
able time spent in expanding the result of each guess. The point of diminishing
returns would be reached rather rapidly, though, since TECH is already fully utiliz-
ing 1/5 of the opponent’s time, suggesting that no further gain would result from
considering more than four alternatives.

Fig. 5.3 shows that with a rapid search TECH chose Spassky or Fischer's
moves correctly about 32% of the time. This is very similar to the correct guesses
against TECH's opponents. The master’s move was within TECH’s top two moves
48% of the time, and within TECH’s top four moves 62% of the time. If, for exam-
ple, TECH were to consider the two top moves equally it might guess the
opponent’s move correctly about half the time, but would spend only half that time
working on the correct move, so that at most 25% of the opponent’s time would be
utilized. In fact it would probably be less, since the correct guesses would still be
likely to include the moves for which the opponent uses less time.

6.3.4. The opening book

A book of openings has two functions: to guide the opening game in the
desired directions, and to save search time by having moves prepared in advance.
TECH'’s opening book is small compared to that of other programs, and consists
solely of the former type of move. As TECH made poor moves that could not be
changed by incremental modification of the top-level positional evaluation function
or a bit more depth, moves to correct the immediate problem were put into the
book.
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In general TECH’s opening heuristics have been found to produce a fairly
sound opening, but occasionally it makes an opening move which is known to be
poor. In some cases these moves cannot be eliminated by modifying the positional
evaluation function. For example, TECH will always accept a gambit pawn unless
specifically forbidden by the book, since the material gain overrides all positional
considerations. There are also well-known traps in the opening which are too deep
to be discovered in a reasonable amount of time by TECH. These are prime candi-
dates for inclusion in the book. A more aggressive strategy was used unsuccessfully
by one program in a Computer Chess Championship: several tricky lines were put
into the book in direct response to known lines used by the defending champion
Northwestern program.

Clearly this form of "programmer learning” is sufficient to prevent the program
from being caught twice in the same trap, but it is not clear how much it improves
the overall performance, or in what proportion of games a player can recover from a
poor opening. An additional complication is that the programmer might supply a
book move leading to a line that the program does not understand. An example of
this appears in the game TECH vs. Genie (playoff in 2nd Annual Computer Chess
Championship) where the Genie program used Greenblatt’s book to achieve a supe-
rior opening, but immediately lost material after leaving the book. One solution to
this problem (more applicable to a non-TECH-type program) would be to provide
advice to the program on the goals to pursue at the end of the book line. These
goals would be expressed as modifications of the terminal node ;valuation function.

6.4. Results

The most powerful search reduction heuristic in TECH is the capture sort (C),
which decreases the search time by about an order of magnitude. The experiment to
determine the effects of interacting mechanisms indicated that the aspiration heuristic
contributed strongly to the performance, decreasing the search time by another 23.4%
when no heuristics other than the capture sort are used. The iterative deepening heuristic
increases the search time significantly, by 5% with no other heuristics present.

The mater switch M (checking moves for absolute legality rather than recognizing
checks and mates only when the king is captured) was found to be very effective in posi-
tions involving checks and mates but counter-productive in situations not involving
mates, so that the overall contribution was not significant (due to its high variance). Its
interaction with the positional pre-sort (P), however, was significant. This result indicates
that the mater heuristic should be used regularly, since the positional pre-sort is always
turned on. The mater switch is not now one of TECH’s defaults. Better yet, a heuristic
might be developed to determine which positions would be likely to need the mater
switch.

Another useful finding from this experiment is that the killer heuristic (K) is not
effective in TECH, and so should be removed from TECH's defaults. It was not
significant by itself, and it interacted harmfully with the aspiration level heuristic (A).
Most of the killer moves are moved to the front of the move list anyway by the capture
sort, so that the time used in checking for killers is usually wasted. This is not a blanket
denunciation of the heuristic: it should still be valuable in a program with a complex
evaluation function, where it is not immediately evident at move generation time what
moves will affect the terminal evaluation of their sub-trees. Even in TECH it might be
feasible to suggest only non-capture killer moves, such as forking and pinning moves, but
these would occur rather infrequently.

The detection of draws by repetition is quite important, since the opportunity to
draw (or avoid a draw) arises in about 10% of TECH's games against human tournament
players. The algorithm catches most potential draws, but is still not perfect, since (1) the
program should be able to tell in the terminal evaluation whether a drawn position has
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been reached, and (2) a deeper understanding is needed to avoid draws due to a perpetual
check. At TECH’s level of play it is probably not important to be able to deal effectively
with these problems.

The think-ahead heuristic (using the opponent’s time) is an unmixed blessing, gain-
ing effectively 20% more time for TECH’s use. The guess about the opponent’s move is
correct about 1/3 of the time, so that it would probably not be effective to consider many
more possibilities for the opponent.

The "deferral problem” occurs rarely, but is annoying or fatal when it happens. The
kludge used to circumvent it is effective but not always absolutely correct.

The opening book mechanism has been used to prevent TECH from repeating major
blunders in the opening. It can and should be extended to cover more lines, both to
achieve better positions and to save time.
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7. Conclusions

The goal of this thesis has been to describe and demonstrate procedures for evaluation of
a large Al program. The program used was the Technology Chess Program, which has a fairly
simple basic structure but which nevertheless plays chess surprisingly well, performing above
the average existing chess programs. In this thesis the structure of the program was examined
in order to determine the contribution to the overall performance of the mechanisms compris-
ing it.

A performance analysis of the Technology Chess Program was carried out using empirical,
theoretical, and statistical methods. The research was directed toward evaluating the overall
performance of the program relative to that of human experts, and explaining the performance
by assigning credit to the individual algorithms and heuristics for their contribution to the ]
behavior.

T Ty T R T

7.1. Empirical methods

The performance of an Al program that operates in areas-of human proficiency
should, if possible, be compared to that of human performance on the same task. In
chess the obvious measure is the establishment of a U. S. Chess Federation rating. The
rating method used is well grounded in statistics, and has survived several decades of use.
TECH was entered in seven otherwise human tournaments and emerged with a USCF rat-
ing of 1243. This placed TECH in Class D, the second rung of rated tournament chess =
players. Good resuits in three ACM-sponsored U. S. Computer Chess Championships
indicate that TECH is fairly strong compared to other chess programs.

» h'r"

7.1.1. TECH vs TECH

Having established one firm data point an attempt was made to extend it into a i
curve. The technology curve is a graph of computer speed vs USCF rating for a
Technology program implemented on a machine of that speed. A tournament was
played among TECH variations with different time allocations, and ratings were
computed for each program.

The resulting curve indicated that small changes in the allotted time yielded a
large gain in USCF rating points. In fact, if the slope around the known data point
is accurate TECH’s performance would increase by one USCF rating class if its time
were doubled. The experiment dealt with data points close to the known one, since 1
games with very large time allocations are expensive. Thus no claim is made that | T

further doublings would result in comparable increases. However, the data indicate
that the near-term payoff for improved technology is high.

7.1.2. Rating with a human-calibrated test

F. D. Bloss found that the speed of solution of mating problems was directly
correlated with the USCF rating of tournament players. TECH’s rating was
estimated using Bloss’ data. It performed at the class C level on these problems,
with a rating of 1520. The difference between this and TECH’s official class D rat-
ing is due to TECH’s relatively better tactical understanding. These data offered
another opportunity to approximate the technology curve. TECH’s rating on faster
or slower machines can be obtained by multiplying each of the times by the
appropriate factor and computing the new rating. It was found that to perform one
USCEF class better on this test TECH needed only a factor of 3 or 4 increase in
speed. It should be noted that the increased tactical ability gained by the increase in
speed would not be matched by an increased strategic or positional ability, so that
TECH would not improve as uniformly as a human player.
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7.1.3. Comparing performance with experts

TECH'’s performance was compared against that of expert human players using
methods developed by A. L. Samuel for checkers. TECH was applied to each of the
positions in the 1972 match between Boris Spassky and Robert Fischer for the World
Championship. TECH’s Samuel Coefficient for these games was 0.737, correspond-
ing to a 71% reduction in the search according to a model developed in §5. A simi-
lar result was obtained for TECH’s performance on a set of positions used by T.
Marsland.

TECH had difficulties with a number of tactical positions during these games.
Since they represent an inherent limitation to TECH’s tactical ability they were
analyzed in some detail. About 1/4 of these errors were due to insufficient depth of
search, so that a TECH program farther along the technology curve would have been
able to understand them. Another quarter dealt with sacrifices, which are beyond
TECH’s scope. Difficulties with king safety (a potentially solvable problem)
accounted for another 10%, as did the horizon effect. These and other problems
encountered in this experiment must be solved in a program intended to play chess
well.

7.2. Theoretical methods

Simplified mathematical models of aspects of a program’s structure can be used to
illuminate the program’s behavior. A model of the swapping algorithm in an operating
system can be changed much more easily than the operating system itself, and can yield
information not only on the current behavior of the swapper but also on ways of improv-
ing it. Similarly, a mathematical model of the tree search of an information storage and
retrieval system can give bounds on the effort needed for the various ways of accessing
the information. Al programs are equally amenable to this kind of approach.

Most of TECH’s power is a result of the extent of the search that it is able to carry
out. This search depends to a great extent on the efficiency of alpha-beta pruning. A
model of tree searching with alpha-beta pruning was presented in §4. The model postu-
lated a tree with constant depth and branching factor, with the leaf nodes drawn indepen-
dently from identical distributions. A Monte Carlo simulation of the model was
developed, and graphs of the search effort in random trees were presented.

The relevance of the model to the chess environment in general was explored. It
was found that the assumptions made (independence of the evaluations in sub-trees and
continuity of the evaluation function) were not quite true in real trees, but were close
enough to make the model valuable. This model was used to compare TECH’s perfor-
mance with the theoretical optimum. The result is that TECH’s trees are often within a
factor of 2 of perfect ordering, and much less than randomly ordered trees. Less than an
order of magnitude improvement in search time could be gained by improving the order-
ing of TECH’s moves at intermediate levels in the tree.

7.3. Statistical methods

The method of analysis of variance (ANOVA) is a powerful statistical tool used
extensively in the behavioral sciences, but it is almost unknown in Al. It allows us to
consider a complex program with identifiable heuristics as a black box with switches. As
the switches are turned on and off the effect of the system on a set of inputs is observed
and the resuits are analyzed statistically. This model should also be applicable to pattern-
recognition programs, learning programs, and heuristic problem solvers.

In order to achieve a more detailed understanding of the contributions of individual
heuristics to TECH’s performance an experiment was designed to compare the behavior
of versions of TECH with different combinations of tactical heuristics on a set of tactical
problems [Reinfeld 1958]. A set of preliminary runs showed that sorting captures to the
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front of each move list decreased the search by about an order of magnitude for the prob-
lems considered. Results from §4 show that the gain is geometrically greater with deeper
searches so that the capture sort decreases the search by about 2 orders of magnitude at 4
ply. An analysis of variance was performed to determine the individual and joint contri-
butions of the remaining heuristics. It was determined from this analysis that only the
aspiration heuristic and the iterative deepening mechanism had significant effects individu-
ally on the search time. Aspiration reduced the search times by 23.4% when no other
heuristics were applied, and iterative deepening increased them by 5.0%.

It was found in addition that the interaction between the "mater switch” (considering
only absolutely legal moves instead of allowing king captures to be discovered deeper in
the tree) and the positional evaluation provided a significant improvement in the search
times.

The killer heuristic, however, was found to have no significant effect on the search
times. The killer heuristic is subsumed to a great extent by the capture sort, so that the
moves found by the killer heuristic have already been placed first. This would not neces-
sarily be the case in a program with a more sophisticated terminal node evaluation func-
tion, where the effect of a given move on the final evaluation could not be so well
predicted.

TECH’s tournament games were analyzed to determine the value of using the
opponent’s time. It guesses the opponent’s move correctly one-third of the time, result-
ing in the substantial overall gain of 20% more time available for TECH’s analysis. The
gain is not more because (1) TECH’s opponents usually took less time overall than
TECH, and (2) the moves guessed correctly are frequently the "obvious” moves, so that
the opponent does not take as long to decide on them.

7.4. Future research directions

There is room for more research in the analysis of tree-searching algorithms. An
extension of the methods of §4 should also be applicable to algorithms suitable for parallel
evaluation by machines with a large number of independent processors, since in that way
a potentially large gain in available search time could be achieved. (The cost per move
would not be reduced - only the real time, which is critical to the performance program.)
More relevant models of game trees could also be developed to take into account the
non-independence of values within a sub-tree and branching factors drawn from a non-
constant distribution.

One aspect of TECH’s performance not analyzed in this thesis is the contribution to
the overall performance of the top level positional pre-sort. It is responsible for much of
TECH’s correct behavior in the opening and end-game, since most moves in these posi-
tions are tactically equal. The values used for each of the heuristics used in the pre-sort
could be optimized by methods like those of Samuel, comparing the resulting orderings
against human play. Each of the positional heuristics could be assigned credit or blame
for its contribution to each move by an analysis of the number of times it made the
difference between the move selected and the second choice.

The principle of using expert-calibrated tests, used in §5, could be extended and
used for measuring the skill of chess programs and other performance programs. A test
could be constructed for each identifiable dimension of performance. For chess this
would include mating problems (like Bloss’ test), other tactical problems, endgame and
opening problems among others. To test a medical diagnosis program such as MYCIN
[Davis, Buchanan and Shortliffe, 1977], as another example, one could select patients
with known organisms and calibrate the program’s behavior against that of doctors identi-
fying and treating the organisms.
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7.5. Potential improvements to TECH

During the experiments comprising this thesis several ideas have arisen that would
improve TECH’s performance without greatly increasing the time required to implement
TECH on a new machine. Most obvious is speeding it up without changing the basic
algorithm. Alan Baisley implemented TECH in assembly language on a PDP-10 (KA10
processor) at MIT and gained about 25% in speed over my BLISS version on the same
machine. A hardware legal move generator would increase the speed by about a factor of
two; better (though more expensive) results could be obtained with multiple processors
investigating different branches of the move tree.

A substantial increment in playing ability would result from putting a little more
intelligence in the evaluation function for terminal nodes. Since the current evaluation
function is too fast to have a noticeable effect on the search time, certainly more content
could be added to it until it does become noticeable.

One of TECH's main failings is myopia about king safety. It would be rather easy to
include sequences of checks and escapes from check in the quiescence algorithm, as long
as care is taken to avoid very long sequences. This would enable TECH to follow some
forced sequences that are second nature to human Class D players.

So far TECH’s opening book has not been used extensively for saving time,
although this is clearly within the design philosophy of using technology (in this case a
large data base) to improve performance. Two approaches are under consideration. First,
openings that conform well to TECH’s best play (open, tactical positions) may be selected
and exhaustively entered into the book, using all available analysis from the chess litera-
ture. These would be augmented as more master games are reported. Second, TECH
could be used to generate its own book by running at significantly greater depths in over-
night runs to generate likely lines, using its current book and games played against it as
starting points for analysis. In positions not encountered in actual play it could expand
the several moves it rates highest for the opponent. The first method is more sparing of
computer time and would lead to better positions in general, but the second has the
advantage of providing self-improvement without effort by the programmer.

7.6. Contributions to Artificial Intelligence

The primary contribution of this thesis to Al is as a paradigm for evaluation of the
performance of complex programs. The Technology Chess Program was used as a vehicle
for this evaluation, since its performance is good enough to be compared with human
play, and since its structure, though not trivial, is simple enough to allow a thorough
exposition of the methods used. The analysis of TECH was executed using analytical,
empirical, and statistical methods. TECH's performance relative to humans was esta-
blished, and the factors contributing to that performance were analyzed. A similar
analysis would be valuable in other major Al projects, leading to a deeper understanding
of the behavior of the programs as well as indications of areas of potential improvement.

The use of ANOVA to assign credit to interacting mechanisms is an important con-
tribution. Although it has been widely applied in other fields, there are few examples of
careful statistical analysis in Al programs. Use of experimental procedures that are stan-
dard in other fields can give significant insight into the behavior of such a complex pro-
gram.

A secondary contribution of this thesis is in the analysis of the Technology program
itself. Because of its simplicity and tactical competence a TECH-like program can serve as
a useful benchmark and sparring partner for "more intelligent" chess programs. The
benefit of such a sparring partner is much greater if its strengths and weaknesses are well
understood.

Samuel used a coefficient based on the average placement of a master's move in the
program’s move list as a measure for evaluating his programs. This thesis presents a
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simplified model of the decision process in board games and derives from it an interpreta-
tion of the Samuel Coefficient as a search reduction. This helps give an intuitive idea of
what Samuel’s classic experiment is optimizing.

A significant contribution to game-playing is the use of the model of alpha-beta to
show how close a program’s performance is to random ordering. Previously the only
upper bound on an alpha-beta search was the minimax algorithm; the randomly ordered
search has a considerably smaller growth exponent than minimax. Establishing that
TECH's tree is close to perfectly ordered (relative to its evaluation function) is also
important: it says that at most one additional ply can be gained by improving the order of
moves to be considered.
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